Small Molecules for Cell Health Applications

Request Information

Calbiochem® provides high quality small molecule inhibitors for the analysis of apoptosis, cell cycle regulation, checkpoint signaling, cell proliferation and other research areas as they relate to cell viability, replication, and function. Calbiochem® inhibitors have been cited in numerous peer-reviewed publications.



Caspase Inhibitors

Activation of caspases is one of the most widely recognized features of apoptosis. Caspases are cysteine-dependent, aspartate-specific proteases. They exist as latent precursors, which, when activated by limited proteolysis, initiate the death program by destroying key components of the cellular infrastructure and activating factors that mediate damage to the cells. Caspase inhibitors act by binding to the active site of caspases either in a reversible or irreversible manner. Inhibitor design includes a peptide recognition sequence attached to a functional group such as an aldehyde (CHO), chloromethylketone (CMK), or fluoromethylketone (FMK) ...

Cell Adhesion Inhibitors

Cell adhesion molecules (CAM) are multifunctional proteins involved in a number of regulatory processes, including cell growth, differentiation, proliferation, migration, and regeneration. Increased expression of CAMs on the vascular endothelium is postulated to play an important role in atherogenesis. CAMs also play critical roles in the recruitment and migration of cells to sites of inflammation. Hence, these molecules have become targets for the development of inhibitors for treatment of cancer, inflammation, and autoimmune diseases ...


Cyclin-Dependent Kinase (Cdk) Inhibitors

Cell cycle progression is regulated by a series of sequential events that include the activation and subsequent inactivation of cyclin dependent kinases (Cdks) and cyclins. Cdks are a group of serine/threonine kinases that form active heterodimeric complexes by binding to their regulatory subunits, cyclins. From a therapeutic standpoint, Cdks are considered promising targets in cancer chemotherapy. The most promising strategies involve designing inhibitors that either block Cdk activity or prevent their interaction with cyclins ...

DNA and RNA Polymerase Inhibitors

Inhibitors of DNA and RNA polymerases are invaluable tools in both clinical and research settings. The use of DNA and RNA polymerase inhibitors aids in delineating the mechanistic aspects of transcription and DNA replication, in defining structure-function relationships, and in protein turnover studies. Characterizing mutations that can confer resistance to antibiotics can help identify the genomic loci that encode for the respective subunit of the target enzyme. Furthermore, some of these inhibitors can be used in studies requiring the synchronization of the cell cycle ...


Histone Acetylase and Deacetylase Inhibitors

Gene expression, to a large extent, is controlled by the acetylation and deacetylation of the histones in the nucleosomal core. Histone acetylation has been linked to gene-specific activation by transcription factors. Histone deacetylases (HDAC), on the other hand, act as transcriptional repressors or silencers of genes. Studies have shown that certain oncogenes repress transcription by recruitment of HDACs. This has led to the interest in small molecules that act as inhibitors of HDAC and have potential for the treatment of cancer ...

ATM/ATR Kinase Inhibitors

ATM (Ataxia-telangiectasia mutated) and ATR (ATM- and Rad3-related), members of phosphatidyl inositol 3-kinase-like kinase (PIKK) family, are activated in response to DNA damage. Defects in ATM/ATR signaling pathways are commonly seen in human cancer cells and affect the sensitivity of tumors to DNA-damaging chemo- and radiation therapies. Hence, designing inhibitors that block ATM and ATR activities might be useful in promoting chemo- and radiation sensitization in checkpoint-deficient cancer cells ...


Discover Other Cell Health-Related Inhibitors