Millipore Sigma Vibrant Logo
 

305-53-3


4 Results Advanced Search  
Showing
Products (0)
Documents (4)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (3)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Integrins modulate fast excitatory transmission at hippocampal synapses. 12524441

    The present study provides the first evidence that adhesion receptors belonging to the integrin family modulate excitatory transmission in the adult rat brain. Infusion of an integrin ligand (the peptide GRGDSP) into rat hippocampal slices reversibly increased the slope and amplitude of excitatory postsynaptic potentials. This effect was not accompanied by changes in paired pulse facilitation, a test for perturbations to transmitter release, or affected by suppression of inhibitory responses, suggesting by exclusion that alterations to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptors cause the enhanced responses. A mixture of function-blocking antibodies to integrin subunits alpha(3), alpha(5), and alpha(v) blocked ligand effects on synaptic responses. The ligand-induced increases were (i) blocked by inhibitors of Src tyrosine kinase, antagonists of N-methyl-d-aspartate receptors, and inhibitors of calcium calmodulin-dependent protein kinase II and (ii) accompanied by phosphorylation of both the Thr(286) site on calmodulin-dependent protein kinase II and the Ser(831) site on the GluR1 subunit of the AMPA receptor. N-Methyl-d-aspartate receptor antagonists blocked the latter two phosphorylation events, but Src kinase inhibitors did not. These results point to the conclusion that synaptic integrins regulate glutamatergic transmission and suggest that they do this by activating two signaling pathways directed at AMPA receptors.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Overexpression of calbindin-D28K in hippocampal progenitor cells increases neuronal differentiation and neurite outgrowth. 16278289

    Excitatory stimuli are known to be a potent regulator for induction of neuronal differentiation. Calbindin-D28K buffers intracellular Ca2+ and modifies synaptic functions in neurons. However, the effects of calbindin-D28K on the regulation of activity-induced neuronal differentiation and related biochemical modifications remain unsolved. In the present study, by a gain-of-function study with retroviral vector system and dicer-generated small interfering RNA (d-siRNA) to effectively knock down the expression of calbindin-D28K, we demonstrated that calbindin-D28K at a physiologically relevant level promoted neuronal differentiation and neurite outgrowth. Increase of neuronal differentiation by calbindin-D28K overexpression was concurrent with the expression of basic helix-loop-helix (bHLH) transcriptional factors, phosphorylation of calcium and calmodulin-dependent protein kinase II (CaMKII) and NeuroD at Ser(336). KN-62, a highly specific CaMKII inhibitor, blocked the up-regulation of proneural bHLH genes, p-CaMKII, and pSer(336)NeuroD. Calbindin-D28K appeared to facilitate neuronal differentiation of both fetal and adult hippocampal progenitor cells. Together, these findings establish the novel calbindin-regulated function of CaMKII and NeuroD in control of neuronal differentiation and neurite outgrowth.
    Document Type:
    Reference
    Product Catalog Number:
    05-533
    Product Catalog Name:
    Anti-phospho-CaM Kinase II Antibody, α subunit, (Thr286), clone 22B1
  • Bone marrow stroma-secreted cytokines protect JAK2(V617F)-mutated cells from the effects of a JAK2 inhibitor. 21512135

    Signals emanating from the bone marrow microenvironment, such as stromal cells, are thought to support the survival and proliferation of the malignant cells in patients with myeloproliferative neoplasms (MPN). To examine this hypothesis, we established a coculture platform [cells cocultured directly (cell-on-cell) or indirectly (separated by micropore membrane)] designed to interrogate the interplay between Janus activated kinase 2-V617F (JAK2(V617F))-positive cells and the stromal cells. Treatment with atiprimod, a potent JAK2 inhibitor, caused marked growth inhibition and apoptosis of human (SET-2) and mouse (FDCP-EpoR) JAK2(V617F)-positive cells as well as primary blood or bone marrow mononuclear cells from patients with polycythemia vera; however, these effects were attenuated when any of these cell types were cocultured (cell-on-cell) with human marrow stromal cell lines (e.g., HS5, NK.tert, TM-R1). Coculture with stromal cells hampered the ability of atiprimod to inhibit phosphorylation of JAK2 and the downstream STAT3 and STAT5 pathways. This protective effect was maintained in noncontact coculture assays (JAK2(V617F)-positive cells separated by 0.4-μm-thick micropore membranes from stromal cells), indicating a paracrine effect. Cytokine profiling of supernatants from noncontact coculture assays detected distinctly high levels of interleukin 6 (IL-6), fibroblast growth factor (FGF), and chemokine C-X-C-motif ligand 10 (CXCL-10)/IFN-γ-inducible 10-kD protein (IP-10). Anti-IL-6, -FGF, or -CXCL-10/IP-10 neutralizing antibodies ablated the protective effect of stromal cells and restored atiprimod-induced apoptosis of JAK2(V617F)-positive cells. Therefore, our results indicate that humoral factors secreted by stromal cells protect MPN clones from JAK2 inhibitor therapy, thus underscoring the importance of targeting the marrow niche in MPN for therapeutic purposes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »