Millipore Sigma Vibrant Logo
 

BrdU+Cell+Proliferation+Assay+Kit


7 Results Advanced Search  
Showing
Products (0)
Documents (6)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Isatis tinctoria L. combined with co-stimulatory molecules blockade prolongs survival of cardiac allografts in alloantigen-primed mice. 20338239

    Memory T cells present a unique challenge in transplantation. Although memory T cells express robust immune responses to invading pathogens, they may be resistant to the effects of immunosuppressive therapies used to prolong graft survival. In previous studies, we found that compound K, the synthesized analogue of highly unsaturated fatty acids from Isatis tinctoria L., reduced acute cardiac allograft rejection in mice (Wang et al., 2009 [1]). Here, we further investigated the effect of compound K on cardiac allograft rejection in alloantigen-primed mice. We found that compound K significantly inhibited CD4(+) and CD8(+) memory T cells proliferation in a mixed lymphocyte reaction (MLR). In vivo, compound K combined with anti-CD154 and anti-LFA-1 monoclonal antibodies (mAbs) significantly extended the survival time of heart grafts in alloantigen-primed mice with no obvious toxic side effects. Furthermore, our data suggests that compound K works by reducing the expression of both IL-2 and IFN-gamma within the graft rather than enhancing expression of regulatory T cells (Tregs). Compound K can also inhibit the alloresponses of memory T cells, while increasing the proportion of CD4(+) memory T cells in the spleen of the recipients and significantly reducing the level of alloantibodies in the serum. Our study highlights the unique immune effects of compound K that may be further explored for clinical use in extending the survival of transplant grafts. Copyright © 2010 Elsevier B.V. All rights reserved.
    Document Type:
    Reference
    Product Catalog Number:
    2750
    Product Catalog Name:
    BrdU Cell Proliferation Kit
  • Sugar-induced premature aging and altered differentiation in human epidermal keratinocytes. 17460218

    Normal human epidermal keratinocytes (NHEK) show both the Hayflick phenomenon and differentiation in vitro. The aim of this study was to induce senescence in keratinocytes using two sugars, glucose and glyoxal. Induction of senescence in early-passage NHEK was characterized by monitoring cell morphology, short-term growth characteristics, cell proliferation, and viability assay. In addition, apoptosis, senescence-associated (SA) beta-gal activity, proteasomal activity and glycation, and glycoxidation of total proteins were determined. Our results show that a 3-day treatment with 100 mM glucose or 0.1 mM glyoxal induces in early-passage NHEK various cellular and biochemical characteristics comparable to those observed in serially subcultured late passage NHEK. Furthermore, sugar-treated prematurely aged NHEK showed impaired differentiation, as measured by the quantification of involucrin. There is preliminary evidence that a preexposure of NHEK to mild heat shock (41 degrees C, 1 h, 6 h in advance) can abrogate some of the sugar-induced negative effects, which is an example of mild stress-induced hormesis. This experimental model can be useful to study the effects of potential antiaging interventions.
    Document Type:
    Reference
    Product Catalog Number:
    S7150
    Product Catalog Name:
    OxyBlot Protein Oxidation Detection Kit
  • Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. 21513708

    The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects and die at birth. Here we continue our analysis of the phenotype of Nfib⁻/⁻ lungs and show that Nfib specifically in lung mesenchyme controls late epithelial and mesenchymal cell proliferation and differentiation. There are more PCNA, BrdU, PHH3 and Ki67 positive cells in Nfib⁻/⁻ lungs than in wild type lungs at E18.5 and this increase in proliferation marker expression is seen in both epithelial and mesenchymal cells. The loss of Nfib in all lung cells decreases the expression of markers for alveolar epithelial cells (Aqp5 and Sftpc), Clara cells (Scgb1a1) and ciliated cells (Foxj1) in E18.5 lungs. To test for a specific role of Nfib in lung mesenchyme we generated and analyzed Nfib(flox/flox), Dermo1-Cre mice. Loss of Nfib only in mesenchyme results in decreased Aqp5, Sftpc and Foxj1 expression, increased cell proliferation, and a defect in sacculation similar to that seen in Nfib⁻/⁻ mice. In contrast, mesenchyme specific loss of Nfib had no effect on the expression of Scgb1a1 in the airway. Microarray and QPCR analyses indicate that the loss of Nfib in lung mesenchyme affects the expression of genes associated with extracellular matrix, cell adhesion and FGF signaling which could affect distal lung maturation. Our data indicate that mesenchymal Nfib regulates both mesenchymal and epithelial cell proliferation through multiple pathways and that mesenchymal NFI-B-mediated signals are essential for the maturation of distal lung epithelium.
    Document Type:
    Reference
    Product Catalog Number:
    AB3786
    Product Catalog Name:
    Anti-Prosurfactant Protein C (proSP-C) Antibody
  • A system-wide investigation of the dynamics of Wnt signaling reveals novel phases of transcriptional regulation. 20383323

    Aberrant Wnt signaling has been implicated in a wide variety of cancers and many components of the Wnt signaling network have now been identified. Much less is known, however, about how these proteins are coordinately regulated. Here, a broad, quantitative, and dynamic study of Wnt3a-mediated stimulation of HEK 293 cells revealed two phases of transcriptional regulation: an early phase in which signaling antagonists were downregulated, providing positive feedback, and a later phase in which many of these same antagonists were upregulated, attenuating signaling. The dynamic expression profiles of several response genes, including MYC and CTBP1, correlated significantly with proliferation and migration (Pless than 0.05). Additionally, their levels tracked with the tumorigenicity of colon cancer cell lines and they were significantly overexpressed in colorectal adenocarcinomas (Pless than 0.05). Our data highlight CtBP1 as a transcription factor that contributes to positive feedback during the early phases of Wnt signaling and serves as a novel marker for colorectal cancer progression.
    Document Type:
    Reference
    Product Catalog Number:
    09-129
  • Expression of 1N3R-Tau isoform inhibits cell proliferation by inducing S phase arrest in N2a cells. 25822823

    Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Six tau isoforms are generated from a single gene through alternative splicing of exons 2, 3 and 10 in human brain. Differential expression of tau isoforms has been detected in different brain areas, during neurodevelopment and in neurodegenerative disorders. However, the biological significance of different tau isoforms is not clear. Here, we investigated the individual effect of six different isoforms of tau on cell proliferation and the possible mechanisms by transient expression of eGFP-labeled tau isoform plasmid in N2a cells. Our study showed the transfection efficiency was comparable between different isoforms of tau by examining GFP expression. Compared with other isoforms, we found expression of 1N3R-tau significantly inhibited cell proliferation by Cell Counting Kit-8 assay and BrdU incorporation. Flow cytometry analysis further showed expression of 1N3R-tau induced S phase arrest. Compared with the longest isoform of tau, expression of 1N3R-tau induced cyclin E translocation from the nuclei to cytoplasm, while it did not change the level of cell cycle checkpoint proteins. These data indicate that 1N3R-tau inhibits cell proliferation through inducing S phase arrest.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Bromodeoxyuridine inhibits cancer cell proliferation in vitro and in vivo. 18680882

    The thymidine analog bromodeoxyuridine (BrdU) is incorporated into newly synthesized DNA and has been shown to increase the susceptibility of incorporating cells to ionizing radiation. However, in the absence of secondary stressors, BrdU is thought to substitute relatively benignly for thymidine and is commonly used to birth-date proliferative cells. We report a novel antiproliferative effect of BrdU on cancer cells, which is independent of its role in radiosensitization. A single, brief in vitro exposure to BrdU induces a profound and sustained reduction in the proliferation rate of all cancer cells examined. Cells do not die but variably up-regulate some senescence-associated proteins as they accumulate in the G1 phase of the cell cycle. Bromodeoxyuridine also impairs the proliferative capacity of primary tumor-initiating human glioma cells and may therefore represent a means of targeting cancer stem cells. Finally, conservative in vivo BrdU regimens--in the absence of any other treatment--significantly suppress the progression of gliomas in the highly aggressive, syngeneic RG2 model. These results suggest that BrdU may have an important role as an adjunctive therapeutic for a wide variety of cancers based on new insights into its effect as a negative regulator of cell cycle progression.
    Document Type:
    Reference
    Product Catalog Number:
    S7750
  • «
  • <
  • 1
  • >
  • »