Millipore Sigma Vibrant Logo
 

apolipoprotein+a1


8 Results Advanced Search  
Showing
Products (0)
Documents (8)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Mechanism underlying apolipoprotein E (ApoE) isoform-dependent lipid efflux from neural cells in culture. 19326444

    We determined the molecular mechanisms underlying apolipoprotein E (ApoE)-isoform-dependent lipid efflux from neurons and ApoE-deficient astrocytes in culture. The ability of ApoE3 to induce lipid efflux was 2.5- to 3.9-fold greater than ApoE4. To explore the contributions of the amino- and carboxyl-terminal tertiary structure domains of ApoE to cellular lipid efflux, each domain was studied separately. The amino-terminal fragment of ApoE3 (22-kDa-ApoE3) induced lipid efflux greater than 22-kDa-ApoE4, whereas the common carboxyl-terminal fragment of ApoE induced very low levels of lipid efflux. Addition of segments of the carboxyl-terminal domain to 22-kDa-ApoE3 additively induced lipid efflux in a length-dependent manner; in contrast, this effect did not occur with ApoE4. This observation, coupled with the fact that introduction of the E255A mutation (which disrupts domain-domain interaction) into ApoE4 increases lipid efflux, indicates that interaction between the amino- and carboxyl-terminal domains in ApoE4 reduces the ability of this isoform to mediate lipid efflux from neural cells. Dimeric 22-kDa or intact ApoE3 induced higher lipid efflux than monomeric 22-kDa or intact ApoE3, respectively, indicating that dimerization of ApoE3 enhances the ability to release lipids. The adenosine triphosphate-binding cassette protein A1 (ABCA1) is involved in ApoE-induced lipid efflux. In conclusion, there are two major factors, intramolecular domain interaction and intermolecular dimerization, that cause ApoE-isoform-dependent lipid efflux from neural cells in culture.
    Document Type:
    Reference
    Product Catalog Number:
    AB947
    Product Catalog Name:
    Anti-Apolipoprotein E Antibody
  • Effect of a salmon diet on the distribution of plasma lipoproteins and apolipoproteins in normolipidemic adult men. 2051900

    The effects of n-3 fatty acids on plasma lipids, lipoproteins and apoproteins have usually been studied in humans after feeding of purified fish oil. This study describes the effect of a natural diet, containing salmon as the source of n-3 fatty acids, on these parameters as compared to a diet very low in n-3 fatty acids. The subjects were nine normolipidemic, healthy males who were confined to a nutrition suite for 100 days. During the first 20 days of the study the participants were given a stabilization diet consisting of 55% carbohydrates, 15% protein, and 30% fat. The n-3 content of this diet was less than 1%, and it contained no 20- or 22-carbon n-3 fatty acids. After the stabilization period the men were split into two groups, one group continued on the stabilization diet while the other received the salmon diet that contained approximately 2.1 energy percent (En%) of calories from 20- and 22-carbon n-3 fatty acids. Both diets contained equal amounts of n-6 fatty acids. This regime continued for 40 days, then the two groups switched diets for the remainder of the study. Plasma triglycerides were lowered significantly (p less than 0.01) and high density lipoprotein cholesterol (HDL-C) was significantly elevated (p less than 0.01) after the men consumed the salmon diet for 40 days. The very low density lipoproteins (VLDL) were lowered, but the trend did not reach statistical significance during the intervention period.(ABSTRACT TRUNCATED AT 250 WORDS)
    Document Type:
    Reference
    Product Catalog Number:
    20-400
    Product Catalog Name:
    Magna GrIP™ Rack (8 well)
  • Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatmen ... 17506726

    In the present study we have used adenovirus-mediated gene transfer of apoA-I (apolipoprotein A-I) mutants in apoA-I-/- mice to investigate how structural mutations in apoA-I affect the biogenesis and the plasma levels of HDL (high-density lipoprotein). The natural mutants apoA-I(R151C)Paris, apoA-I(R160L)Oslo and the bioengineered mutant apoA-I(R149A) were secreted efficiently from cells in culture. Their capacity to activate LCAT (lecithin:cholesterol acyltransferase) in vitro was greatly reduced, and their ability to promote ABCA1 (ATP-binding cassette transporter A1)-mediated cholesterol efflux was similar to that of WT (wild-type) apoA-I. Gene transfer of the three mutants in apoA-I-/- mice generated aberrant HDL phenotypes. The total plasma cholesterol of mice expressing the apoA-I(R160L)Oslo, apoA-I(R149A) and apoA-I(R151C)Paris mutants was reduced by 78, 59 and 61% and the apoA-I levels were reduced by 68, 64 and 55% respectively, as compared with mice expressing the WT apoA-I. The CE (cholesteryl ester)/TC (total cholesterol) ratio of HDL was decreased and the apoA-I was distributed in the HDL3 region. apoA-I(R160L)Oslo and apoA-I(R149A) promoted the formation of prebeta1 and alpha4-HDL subpopulations and gave a mixture of discoidal and spherical particles. apoA-I(R151C)Paris generated subpopulations of different sizes that migrate between prebeta and alpha-HDL and formed mostly spherical and a few discoidal particles. Simultaneous treatment of mice with adenovirus expressing any of the three mutants and human LCAT normalized plasma apoA-I, HDL cholesterol levels and the CE/TC ratio. It also led to the formation of spherical HDL particles consisting mostly of alpha-HDL subpopulations of larger size. The correction of the aberrant HDL phenotypes by treatment with LCAT suggests a potential therapeutic intervention for HDL abnormalities that result from specific mutations in apoA-I.
    Document Type:
    Reference
    Product Catalog Number:
    AB740
  • Atorvastatin inhibits ABCA1 expression and cholesterol efflux in THP-1 macrophages by an LXR-dependent pathway. 18427282

    The effect of atorvastatin on adenosine triphosphate (ATP)-binding cassette transporter A1 (ABCA1) expression and cholesterol efflux remains controversial. In an effort to clarify this issue, ABCA1 expression and apolipoprotein AI (apoAI)-mediated cholesterol efflux after atorvastatin treatment were investigated in THP-1 macrophages. Atorvastatin from 2 microM to 40 microM dose-dependently inhibited ABCA1 expression in human monocyte-derived macrophages and phorbol 12-myristate 13-acetate (PMA)-stimulated THP-1 monocytes. ApoAI-mediated cholesterol efflux was reduced in PMA-stimulated THP-1 cells treated with atorvastatin, this effect was abolished with acetylated low-density lipoprotein (LDL) pretreatment. Atorvastatin treatment also dose-dependently reduced liver X receptor alpha (LXRalpha) expression and Rho activation. Rho activation by farnysylpyophosphate (FPP) and lysophosphatidic acid (LPA) did not salvage, but further depressed, the cholesterol efflux and ABCA1 expression in the presence of atorvastatin. Without atorvastatin, Rho activation by mevalonate, FPP, and LPA diminished apoAI-mediated cholesterol efflux, and Rho activation by GTPgammaS also decreased ABCA1 messenger ribonucleic acid (mRNA) by 16%. Furthermore, Rho inhibition by C3 exoenzyme increased ABCA1 mRNA by 48% despite a 17% decrease in apoAI-mediated cholesterol efflux. LXRalpha agonists (T01901317 and 22(R)-hydroxycholesterol) prevented any reductions in cholesterol efflux or ABCA1 expression associated with atorvastatin treatment. Furthermore, Western blot analysis demonstrated the reciprocal inhibition of Rho and LXRalpha. In conclusion, atorvastatin decreases ABCA1 expression in noncholesterol-loaded macrophages in an LXRalpha- but not Rho-dependent pathway; this effect can be compromised after acetylated LDL cholesterol loading.
    Document Type:
    Reference
    Product Catalog Number:
    05-778
    Product Catalog Name:
    Anti-Rho (-A Antibody, -B, -C), clone 55
  • Abca1 deficiency affects Alzheimer's disease-like phenotype in human ApoE4 but not in ApoE3-targeted replacement mice. 22993429

    ATP-binding cassette transporter A1 (ABCA1) transporter regulates cholesterol efflux and is an essential mediator of high-density lipoprotein (HDL) formation. In amyloid precursor protein (APP) transgenic mice, Abca1 deficiency increased amyloid deposition in the brain paralleled by decreased levels of Apolipoprotein E (ApoE). The APOEε4 allele is the major genetic risk factor of sporadic Alzheimer's disease (AD). Here, we reveal the effect of Abca1 deficiency on phenotype in mice expressing human ApoE3 or ApoE4. We used APP/E3 and APP/E4 mice generated by crossing APP/PS1ΔE9 transgenic mice to human APOE3- and APOE4-targeted replacement mice and examined Abca1 gene dose effect on amyloid deposition and cognition. The results from two behavior tests demonstrate that lack of one copy of Abca1 significantly exacerbates memory deficits in APP/E4/Abca1(-/+) but not in APP/E3/Abca1(-/+) mice. The data for amyloid plaques and insoluble amyloid-β (Aβ) also show that Abca1 hemizygosity increases Aβ deposition only in APP/E4/Abca1(-/+) but not in APP/E3/Abca1(-/+) mice. Our in vivo microdialysis assays indicate that Abca1 deficiency significantly decreases Aβ clearance in ApoE4-expressing mice, while the effect of Abca1 on Aβ clearance in ApoE3-expressing mice was insignificant. In addition, we demonstrate that plasma HDL and Aβ42 levels in APP/E4/Abca1(-/+) mice are significantly decreased, and there is a negative correlation between plasma HDL and amyloid plaques in brain, suggesting that plasma lipoproteins may be involved in Aβ clearance. Overall, our results prove that the presence of functional Abca1 significantly influences the phenotype of APP mice expressing human ApoE4 and further substantiate therapeutic approaches in AD based on ABCA1-APOE regulatory axis.
    Document Type:
    Reference
    Product Catalog Number:
    AB947
    Product Catalog Name:
    Anti-Apolipoprotein E Antibody
  • Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9. 23883163

    Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume.Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet.APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls.In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Characterization of a novel trypanosome lytic factor from human serum. 10085035

    Natural resistance of humans to the cattle pathogen Trypanosoma brucei brucei has been attributed to the presence in human serum of nonimmune factors that lyse the parasite. Normal human serum contains two trypanosome lytic factors (TLFs). TLF1 is a 500-kDa lipoprotein, which is reported to contain apolipoprotein A-I (apoA-I), haptoglobin-related protein (Hpr), hemoglobin, paraoxonase, and apoA-II, whereas TLF2 is a larger, poorly characterized particle. We report here a new immunoaffinity-based purification procedure for TLF2 and TLF1, as well as further characterization of the components of each purified TLF. Immunoaffinity-purified TLF1 has a specific activity 10-fold higher than that of TLF1 purified by previously described methods. Moreover, we find that TLF1 is a lipoprotein particle that contains mainly apoA-I and Hpr, trace amounts of paraoxonase, apoA-II, and haptoglobin, but no detectable hemoglobin. Characterization of TLF2 reveals that it is a 1,000-kDa protein complex containing mainly immunoglobulin M, apoA-I, and Hpr but less than 1% detectable lipid.
    Document Type:
    Reference
    Product Catalog Number:
    AB740
  • Calmodulin interacts with ATP binding cassette transporter A1 to protect from calpain-mediated degradation and upregulates high-density lipoprotein generation. 20395597

    To investigate the interaction of ATP-binding cassette transporter A1 (ABCA1) with calmodulin in relation to its calpain-mediated degradation because many calpain substrates bind calmodulin to regulate cellular functions.The activity of ABCA1 is regulated through proteolysis by calpain. An immunoprecipitation and glutathione S-transferase pull-down assay revealed that ABCA1 directly binds calmodulin in a Ca(2+)-dependent manner. The cytoplasmic loop of ABCA1 contains a typical calmodulin binding sequence of 1-5-8-14 motifs (1245 to 1257 amino acids). The peptide of this region showed binding to calmodulin, and deletion of the 1-5-8-14 motif abolished this interaction. This motif is located near the ABCA1 Pro-Glu-Ser-Thr sequence, and the presence of calmodulin/Ca(2+) protected the peptides from proteolysis by calpain. The knockdown of calmodulin by a specific small and interfering RNA increased the degradation of ABCA1 and decreased ABCA1 protein and apolipoprotein A-I-mediated lipid release. Surprisingly, calmodulin inhibitor W7 increased calmodulin binding to ABCA1 and protected it from calpain-mediated degradation, consistent with our previous finding that this compound increased apolipoprotein A-I-mediated cell cholesterol release.Calmodulin directly binds and stabilizes ABCA1 in the presence of Ca(2+) and increases the generation of high-density lipoprotein.
    Document Type:
    Reference
    Product Catalog Number:
    MABN893
    Product Catalog Name:
    Anti-ABCA1 Antibody, clone MABI98-7
  • «
  • <
  • 1
  • >
  • »