Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Calcitonin induces the association and tyrosine phosphorylation of focal adhesion kinase (FAK), paxillin, and HEF1 in HEK-293 cells that overexpress the calcitonin receptor (C1a-HEK), but the hormone's effect on these adhesion-related proteins in osteoclasts is not known. We therefore studied the effect of calcitonin on the tyrosine phosphorylation and subcellular distribution of paxillin, HEF1, FAK, and Pyk2, a FAK-related tyrosine kinase, in osteoclasts. Osteoclasts expressed both Pyk2 and FAK, with Pyk2 much more highly expressed. The two tyrosine kinases and paxillin were prominently associated with small punctate structures that were most densely clustered in the region of the peripheral F-actin-rich ring. Some of the punctate structures stained either for Pyk2 alone or FAK alone. Treatment with calcitonin disrupted the actin ring and induced the loss of the peripheral staining of paxillin, Pyk2, and FAK. In calcitonin-treated osteoclast-like cells, the tyrosine phosphorylation of paxillin and FAK increased, whereas the tyrosine phosphorylation of Pyk2 decreased. Calcitonin also induced increased phosphorylation of Erk1 and Erk2 in osteoclasts, as it did in the C1a-HEK cells. The unexpected dephosphorylation of Pyk2 correlated with decreased phosphorylation of Tyr(402), the autophosphorylation site of Pyk2. The calcitonin-induced dephosphorylation of Pyk2 was not observed in C1a-HEK cells transfected with Pyk2, suggesting that the reduced phosphorylation seen in osteoclasts may be specific to these cells. Treatment of osteoclast-like cells with 12-phorbol 13-myristate acetate increased the tyrosine phosphorylation of both Pyk2 and FAK, and calphostin C, an inhibitor of protein kinase C, blocked calcitonin-stimulated FAK phosphorylation. Increasing intracellular calcium with ionomycin caused a decrease in the tyrosine phosphorylation of Pyk2 and the loss of the actin ring in a manner similar to the effect of calcitonin. Ionomycin had no effect on FAK tyrosine phosphorylation. Calcitonin (CT)-induced changes in Pyk2, FAK, and Erk1/2 phosphorylation were independent of c-Src.
The hormone calcitonin (CT) is primarily known for its pharmacologic action as an inhibitor of bone resorption, yet CT-deficient mice display increased bone formation. These findings raised the question about the underlying cellular and molecular mechanism of CT action. Here we show that either ubiquitous or osteoclast-specific inactivation of the murine CT receptor (CTR) causes increased bone formation. CT negatively regulates the osteoclast expression of Spns2 gene, which encodes a transporter for the signalling lipid sphingosine 1-phosphate (S1P). CTR-deficient mice show increased S1P levels, and their skeletal phenotype is normalized by deletion of the S1P receptor S1P3. Finally, pharmacologic treatment with the nonselective S1P receptor agonist FTY720 causes increased bone formation in wild-type, but not in S1P3-deficient mice. This study redefines the role of CT in skeletal biology, confirms that S1P acts as an osteoanabolic molecule in vivo and provides evidence for a pharmacologically exploitable crosstalk between osteoclasts and osteoblasts.
Calcitonin gene-related peptide (CGRP) is a key mediator in primary headaches including migraine. Animal models of meningeal nociception demonstrate both peripheral and central CGRP effects; however, the target structures remain unclear. To study the distribution of CGRP receptors in the rat trigeminovascular system we used antibodies recognizing two components of the CGRP receptor, the calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 1 (RAMP1). In the cranial dura mater, CLR and RAMP1 immunoreactivity (-ir) was found within arterial blood vessels, mononuclear cells, and Schwann cells, but not sensory axons. In the trigeminal ganglion, besides Schwann and satellite cells, CLR- and RAMP1-ir was found in subpopulations of CGRP-ir neurons where colocalization of CGRP- and RAMP1-ir was very rare ( approximately 0.6%). CLR- and RAMP1-ir was present on central, but not peripheral, axons. In the spinal trigeminal nucleus, CLR- and RAMP1-ir was localized to glomerular structures, partly colocalized with CGRP-ir. However, CLR- and RAMP1-ir was lacking in central glia and neuronal cell bodies. We conclude that CGRP receptors are associated with structural targets of known CGRP effects (vasodilation, mast cell degranulation) and targets of unknown function (Schwann cells). In the spinal trigeminal nucleus, CGRP receptors are probably located on neuronal processes, including primary afferent endings, suggesting involvement in presynaptic regulation of nociceptive transmission. Thus, in the trigeminovascular system CGRP receptor localization suggests multiple targets for CGRP in the pathogenesis of primary headaches.
Previous studies have indicated that expression of calcitonin receptor (CTR) could be induced in a proinflammatory environment. In the present study, CTR-immunoreactivity (CTR-ir) was investigated in brain tissue from patients with glioblastoma multiforme (GBM).
Document Type:
Reference
Product Catalog Number:
MAB3402
Product Catalog Name:
Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5