Millipore Sigma Vibrant Logo
 

giemsa


15 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (2)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Application of immunohistochemistry in stereology for quantitative assessment of neural cell populations illustrated in the Göttingen minipig. 22905271

    Stereology is the study of estimating geometric quantities. When successfully applied, the combination of immunohistochemistry (IHC) and stereology eliminates intra- and interobserver variability for cell type identification.We propose a method to validate existing antibody based cell type markers for stereological application. Comparison was made on the 100-days-old Göttingen minipig (G-mini) neocortex between estimates of total neuron number derived from Giemsa staining using morphological criteria and immunohistochemistry-based cell counting with NeuN. The mean total neuron numbers estimated by the two staining methods were not significantly different. Estimated quantities, including glial cell number, neocortical volume, cell densities and glial-to-neuron ratio were also presented. Additionally, we assessed other commonly used glial markers and discussed how to evaluate the advantages and disadvantages of these markers for stereological estimation of cell number.The concordance in quantitative estimates of total neuron number derived from NeuN- and Giemsa-stained sections provides evidence for the sensitivity and specificity of NeuN as a neuronal marker in the G-mini. Although time-consuming, quantitative validation of IHC should always be considered in stereological studies if there is doubt of the sensitivity, specificity, or reproducibility of cell type markers. Inaccurate staining may cause both over- and underestimation of the total cell number and inflict considerable limitation when analyzing the results.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Assessment of chromosomal integrity using a novel live-cell imaging technique in mouse embryos produced by intracytoplasmic sperm injection. 19574276

    Intracytoplasmic sperm injection (ICSI) is a technique in which sperm are injected directly into unfertilized oocytes, whereby offspring can be obtained even with dysfunctional sperm. Despite its advantages in human and animal reproductive technology, the low rate of resultant live offspring is perturbing. One major cause is thought to be embryonic chromosomal abnormalities. However, there is no direct evidence of how these occur or how they affect pregnancy outcomes.Chromosomal dynamics during the first mitotic division of mouse embryos were analyzed using a new live-cell imaging technology. After imaging, the embryos' developmental capacities were determined.When ICSI-generated embryos were monitored for their chromosome integrity, some embryos with apparent normal morphology seen by conventional light microscopy had abnormal chromosome segregation (ACS) at the first mitotic division. Chromosomal fragments were misaligned during the first metaphase and formed micronuclear-like structures at the interphase of the 2-cell stage. Similar ACS was also found in mouse embryos produced by microinjecting round spermatids, with even higher frequency. Giemsa staining and immunostaining revealed that these fragments were derived from double-strand DNA breaks in the paternal genome. About half of the embryos with ACS developed into normal-looking morulae or blastocysts and implanted, but almost all of them aborted spontaneously before embryonic day 7.5.ACS during first mitosis appears to be a major cause of early pregnancy losses in ICSI-generated mouse embryos. Moreover, this novel imaging technology could be applicable as a method for the assessment of embryo quality.
    Document Type:
    Reference
    Product Catalog Number:
    05-636
    Product Catalog Name:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • «
  • <
  • 1
  • >
  • »