Millipore Sigma Vibrant Logo
 

k+


3014 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (968)
  • (767)
  • (558)
  • (547)
  • (10)
  • Show More

Analyte

  • (1)
  • (1)
  • (1)
  • (1)

Application Type

  • (1)

General Class

  • (1)

Application Method

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
  • Show More

Specific Class

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • hnRNP K binds a core polypyrimidine element in the eukaryotic translation initiation factor 4E (eIF4E) promoter, and its regulation of eIF4E contributes to neoplastic tra ... 16024782

    Translation initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a key role in regulation of cellular proliferation. Its effects on the m7GpppN mRNA cap are critical because overexpression of eIF4E transforms cells, and eIF4E function is rate-limiting for G1 passage. Although we identified eIF4E as a c-Myc target, little else is known about its transcriptional regulation. Previously, we described an element at position -25 (TTACCCCCCCTT) that was critical for eIF4E promoter function. Here we report that this sequence (named 4EBE, for eIF4E basal element) functions as a basal promoter element that binds hnRNP K. The 4EBE is sufficient to replace TATA sequences in a heterologous reporter construct. Interactions between 4EBE and upstream activator sites are position, distance, and sequence dependent. Using DNA affinity chromatography, we identified hnRNP K as a 4EBE-binding protein. Chromatin immunoprecipitation, siRNA interference, and hnRNP K overexpression demonstrate that hnRNP K can regulate eIF4E mRNA. Moreover, hnRNP K increased translation initiation, increased cell division, and promoted neoplastic transformation in an eIF4E-dependent manner. hnRNP K binds the TATA-binding protein, explaining how the 4EBE might replace TATA in the eIF4E promoter. hnRNP K is an unusually diverse regulator of multiple steps in growth regulation because it also directly regulates c-myc transcription, mRNA export, splicing, and translation initiation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501R
    Product Catalog Name:
    Anti-Actin Antibody,clone C4
  • HERG K(+) channel activity is regulated by changes in phosphatidyl inositol 4,5-bisphosphate. 11739282

    Autonomic stimulation controls heart rate and myocardial excitability and may underlie the precipitation of both acquired and hereditary arrhythmias. Changes in phosphatidyl inositol bisphosphate (PIP2) concentration results from activation of several muscarinic and adrenergic receptors. We sought to investigate whether PIP2 changes could alter HERG K(+) channel activity in a manner similar to that seen with inward rectifier channels. PIP2 (10 micromol/L) internally dialyzed increased the K(+) current amplitude and shifted the voltage-dependence of activation in a hyperpolarizing direction. Elevated PIP2 accelerated activation and slowed inactivation kinetics. When 10 micromol/L PIP2 was applied to excised patches, no significant change in single channel conductance occurred, indicating that PIP2-dependent effects were primarily due to altered channel gating. PIP2 significantly attenuated the run-down of HERG channel activity that we normally observe after patch excision, suggesting that channel run-down is due, in part, to membrane depletion of PIP2. Inclusion of a neutralizing anti-PIP2 monoclonal antibody in whole cell pipette solution produced the opposite effects of PIP2. The physiological relevance of PIP2-HERG interactions is supported by our finding that phenylephrine reduced the K(+) current density in cells coexpressing alpha1A-receptor and HERG. The effects of alpha-adrenergic stimulation, however, were prevented by excess PIP2 in internal solutions but not by internal Ca(2+) buffering nor PKC inhibition, suggesting that the mechanism is due to G-protein-coupled receptor stimulation of PLC resulting in the consumption of endogenous PIP2. Thus, dynamic regulation of HERG K(+) channels may be achieved via receptor-mediated changes in PIP2 concentrations.
    Document Type:
    Reference
    Product Catalog Number:
    ECM600
    Product Catalog Name:
    uPA Activity Assay Kit
  • Na+/K+ ATPase α1 and α3 isoforms are differentially expressed in α- and γ-motoneurons. 23761886

    The Na(+)/K(+) ATPase (NKA) is an essential membrane protein underlying the membrane potential in excitable cells. Transmembrane ion transport is performed by the catalytic α subunits (α1-4). The predominant subunits in neurons are α1 and α3, which have different affinities for Na(+) and K(+), impacting on transport kinetics. The exchange rate of Na(+)/K(+) markedly influences the activity of the neurons expressing them. We have investigated the distribution and function of the main isoforms of the α subunit expressed in the mouse spinal cord. NKAα1 immunoreactivity (IR) displayed restricted labeling, mainly confined to large ventral horn neurons and ependymal cells. NKAα3 IR was more widespread in the spinal cord, again being observed in large ventral horn neurons, but also in smaller interneurons throughout the dorsal and ventral horns. Within the ventral horn, the α1 and α3 isoforms were mutually exclusive, with the α3 isoform in smaller neurons displaying markers of γ-motoneurons and α1 in α-motoneurons. The α3 isoform was also observed within muscle spindle afferent neurons in dorsal root ganglia with a higher proportion at cervical versus lumbar regions. We confirmed the differential expression of α subunits in motoneurons electrophysiologically in neonatal slices of mouse spinal cord. γ-Motoneurons were excited by bath application of low concentrations of ouabain that selectively inhibit NKAα3 while α-motoneurons were insensitive to these low concentrations. The selective expression of NKAα3 in γ-motoneurons and muscle spindle afferents, which may affect excitability of these neurons, has implications in motor control and disease states associated with NKAα3 dysfunction.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Na+/K+-ATPase α1 identified as an abundant protein in the blood-labyrinth barrier that plays an essential role in the barrier integrity. 21304972

    The endothelial-blood/tissue barrier is critical for maintaining tissue homeostasis. The ear harbors a unique endothelial-blood/tissue barrier which we term "blood-labyrinth-barrier". This barrier is critical for maintaining inner ear homeostasis. Disruption of the blood-labyrinth-barrier is closely associated with a number of hearing disorders. Many proteins of the blood-brain-barrier and blood-retinal-barrier have been identified, leading to significant advances in understanding their tissue specific functions. In contrast, capillaries in the ear are small in volume and anatomically complex. This presents a challenge for protein analysis studies, which has resulted in limited knowledge of the molecular and functional components of the blood-labyrinth-barrier. In this study, we developed a novel method for isolation of the stria vascularis capillary from CBA/CaJ mouse cochlea and provided the first database of protein components in the blood-labyrinth barrier as well as evidence that the interaction of Na(+)/K(+)-ATPase α1 (ATP1A1) with protein kinase C eta (PKCη) and occludin is one of the mechanisms of loud sound-induced vascular permeability increase.Using a mass-spectrometry, shotgun-proteomics approach combined with a novel "sandwich-dissociation" method, more than 600 proteins from isolated stria vascularis capillaries were identified from adult CBA/CaJ mouse cochlea. The ion transporter ATP1A1 was the most abundant protein in the blood-labyrinth barrier. Pharmacological inhibition of ATP1A1 activity resulted in hyperphosphorylation of tight junction proteins such as occludin which increased the blood-labyrinth-barrier permeability. PKCη directly interacted with ATP1A1 and was an essential mediator of ATP1A1-initiated occludin phosphorylation. Moreover, this identified signaling pathway was involved in the breakdown of the blood-labyrinth-barrier resulting from loud sound trauma.The results presented here provide a novel method for capillary isolation from the inner ear and the first database on protein components in the blood-labyrinth-barrier. Additionally, we found that ATP1A1 interaction with PKCη and occludin was involved in the integrity of the blood-labyrinth-barrier.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Na(+)/K)+)-ATPase α2-isoform preferentially modulates Ca2(+) transients and sarcoplasmic reticulum Ca2(+) release in cardiac myocytes. 22739122

    Na(+)/K(+)-ATPase (NKA) is essential in regulating [Na(+)](i), and thus cardiac myocyte Ca(2+) and contractility via Na(+)/Ca(2+) exchange. Different NKA-α subunit isoforms are present in the heart and may differ functionally, depending on specific membrane localization. In smooth muscle and astrocytes, NKA-α2 is located at the junctions with the endo(sarco)plasmic reticulum, where they could regulate local [Na(+)], and indirectly junctional cleft [Ca(2+)]. Whether this model holds for cardiac myocytes is unclear.The ouabain-resistant NKA-α1 cannot be selectively blocked to assess its effect. To overcome this, we used mice in which NKA-α1 is ouabain sensitive and NKA-α2 is ouabain resistant (SWAP mice). We measured the effect of ouabain at low concentration on [Na(+)](i), Ca(2+) transients, and the fractional sarcoplasmic reticulum (SR) Ca(2+) release in cardiac myocytes from wild-type (WT; NKA-α2 inhibition) and SWAP mice (selective NKA-α1 block). At baseline, Na(+) and Ca(2+) regulations are similar in WT and SWAP mice. For equal levels of total NKA inhibition (~25%), ouabain significantly increased Ca(2+) transients (from ΔF/F(0)= 1.5 ± 0.1 to 1.8 ± 0.1), and fractional SR Ca(2+) release (from 24 ± 3 to 29 ± 3%) in WT (NKA-α2 block) but not in SWAP myocytes (NKA-α1 block). This occurred despite a similar and modest increase in [Na(+)](i) (~2 mM) in both groups. The effect in WT mice was mediated specifically by NKA-α2 inhibition because at a similar concentration ouabain had no effect in transgenic mice where both NKA-α1 and NKA-α2 are ouabain resistant.NKA-α2 has a more prominent role (vs. NKA-α1) in modulating cardiac myocyte SR Ca(2+) release.
    Document Type:
    Reference
    Product Catalog Number:
    AB9094
  • Na+/K+-ATPase is present in scrapie-associated fibrils, modulates PrP misfolding in vitro and links PrP function and dysfunction. 22073199

    Transmissible spongiform encephalopathies are characterised by widespread deposition of fibrillar and/or plaque-like forms of the prion protein. These aggregated forms are produced by misfolding of the normal prion protein, PrP(C), to the disease-associated form, PrP(Sc), through mechanisms that remain elusive but which require either direct or indirect interaction between PrP(C) and PrP(Sc) isoforms. A wealth of evidence implicates other non-PrP molecules as active participants in the misfolding process, to catalyse and direct the conformational conversion of PrP(C) or to provide a scaffold ensuring correct alignment of PrP(C) and PrP(Sc) during conversion. Such molecules may be specific to different scrapie strains to facilitate differential prion protein misfolding. Since molecular cofactors may become integrated into the growing protein fibril during prion conversion, we have investigated the proteins contained in prion disease-specific deposits by shotgun proteomics of scrapie-associated fibrils (SAF) from mice infected with 3 different strains of mouse-passaged scrapie. Concomitant use of negative control preparations allowed us to identify and discount proteins that are enriched non-specifically by the SAF isolation protocol. We found several proteins that co-purified specifically with SAF from infected brains but none of these were reproducibly and demonstrably specific for particular scrapie strains. The α-chain of Na(+)/K(+)-ATPase was common to SAF from all 3 strains and we tested the ability of this protein to modulate in vitro misfolding of recombinant PrP. Na(+)/K(+)-ATPase enhanced the efficiency of disease-specific conversion of recombinant PrP suggesting that it may act as a molecular cofactor. Consistent with previous results, the same protein inhibited fibrillisation kinetics of recombinant PrP. Since functional interactions between PrP(C) and Na(+)/K(+)-ATPase have previously been reported in astrocytes, our data highlight this molecule as a key link between PrP function, dysfunction and misfolding.
    Document Type:
    Reference
    Product Catalog Number:
    AB9094
  • Na+, K+-ATPase isozyme diversity; comparative biochemistry and physiological implications of novel functional interactions. 10965965

    Na+, K+-ATPase is ubiquitously expressed in the plasma membrane of all animal cells where it serves as the principal regulator of intracellular ion homeostasis. Na+, K+-ATPase is responsible for generating and maintaining transmembrane ionic gradients that are of vital importance for cellular function and subservient activities such as volume regulation, pH maintenance, and generation of action potentials and secondary active transport. The diversity of Na+, K+-ATPase subunit isoforms and their complex spatial and temporal patterns of cellular expression suggest that Na+, K+-ATPase isozymes perform specialized physiological functions. Recent studies have shown that the alpha subunit isoforms possess considerably different kinetic properties and modes of regulation and the beta subunit isoforms modulate the activity, expression and plasma membrane targeting of Na+, K+-ATPase isozymes. This review focuses on recent developments in Na+, K+-ATPase research, and in particular reports of expression of isoforms in various tissues and experiments aimed at elucidating the intrinsic structural features of isoforms important for Na+, K+-ATPase function.
    Document Type:
    Reference
    Product Catalog Number:
    07-674
    Product Catalog Name:
    Anti-Na+K+ ATPase α-2 Antibody
  • Na(+), K(+)-ATPase: the new face of an old player in pathogenesis and apoptotic/hybrid cell death. 14555240

    The Na(+), K(+)-ATPase is a ubiquitous membrane transport protein in mammalian cells, responsible for establishing and maintaining high K(+) and low Na(+) in the cytoplasm required for normal resting membrane potentials and various cellular activities. The ionic homeostasis maintained by the Na(+), K(+)-ATPase is also critical for cell growth, differentiation, and cell survival. Although the toxic effects of blocking the Na(+), K(+)-ATPase by ouabain and other selective inhibitors have been known for years, the mechanism of action remained unclear. Recent progress in two areas has significantly advanced our understanding of the role and mechanism of Na(+), K(+)-ATPase in cell death. Along with increased recognition of apoptosis in a wide range of disease states, Na(+), K(+)-ATPase deficiency has been identified as a contributor to apoptosis and pathogenesis. More importantly, accumulating evidence now endorses a close relationship between ionic homeostasis and apoptosis, namely the regulation of apoptosis by K(+) homeostasis. Since Na(+), K(+)-ATPase is the primary system for K(+) uptake, dysfunction of the transport enzyme and resultant disruption of ionic homeostasis have been re-evaluated for their critical roles in apoptosis and apoptosis-related diseases. In this review, instead of giving a detailed description of the structure and regulation of Na(+), K(+)-ATPase, the author will focus on the most recent evidence indicating the unique role of Na(+), K(+)-ATPase in cell death, including apoptosis and the newly recognized "hybrid death" of concurrent apoptosis and necrosis in the same cells. It is also hoped that discussion of some seemingly conflicting reports will inspire further debate and benefit future investigation in this important research field.
    Document Type:
    Reference
    Product Catalog Number:
    07-674
    Product Catalog Name:
    Anti-Na+K+ ATPase α-2 Antibody
  • The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. 9930699

    GABA (gamma-aminobutyric acid) is the main inhibitory transmitter in the adult brain, and it exerts its fast hyperpolarizing effect through activation of anion (predominantly Cl-)-permeant GABA(A) receptors. However, during early neuronal development, GABA(A)-receptor-mediated responses are often depolarizing, which may be a key factor in the control of several Ca2+-dependent developmental phenomena, including neuronal proliferation, migration and targeting. To date, however, the molecular mechanism underlying this shift in neuronal electrophysiological phenotype is unknown. Here we show that, in pyramidal neurons of the rat hippocampus, the ontogenetic change in GABA(A)-mediated responses from depolarizing to hyperpolarizing is coupled to a developmental induction of the expression of the neuronal (Cl-)-extruding K+/Cl- co-transporter, KCC2. Antisense oligonucleotide inhibition of KCC2 expression produces a marked positive shift in the reversal potential of GABAA responses in functionally mature hippocampal pyramidal neurons. These data support the conclusion that KCC2 is the main Cl- extruder to promote fast hyperpolarizing postsynaptic inhibition in the brain.
    Document Type:
    Reference
    Product Catalog Number:
    07-432
    Product Catalog Name:
    Anti-K+/Cl- Cotransporter (KCC2) Antibody
  • hnRNP K post-transcriptionally co-regulates multiple cytoskeletal genes needed for axonogenesis. 21693523

    The RNA-binding protein, hnRNP K, is essential for axonogenesis. Suppressing its expression in Xenopus embryos yields terminally specified neurons with severely disorganized microtubules, microfilaments and neurofilaments, raising the hypothesis that hnRNP K post-transcriptionally regulates multiple transcripts of proteins that organize the axonal cytoskeleton. To identify downstream candidates for this regulation, RNAs that co-immunoprecipitated from juvenile brain with hnRNP K were identified on microarrays. A substantial number of these transcripts were linked to the cytoskeleton and to intracellular localization, trafficking and transport. Injection into embryos of a non-coding RNA bearing multiple copies of an hnRNP K RNA-binding consensus sequence found within these transcripts largely phenocopied hnRNP K knockdown, further supporting the idea that it regulates axonogenesis through its binding to downstream target RNAs. For further study of regulation by hnRNP K of the cytoskeleton during axon outgrowth, we focused on three validated RNAs representing elements associated with all three polymers - Arp2, tau and an α-internexin-like neurofilament. All three were co-regulated post-transcriptionally by hnRNP K, as hnRNP K knockdown yielded comparable defects in their nuclear export and translation but not transcription. Directly knocking down expression of all three together, but not each one individually, substantially reproduced the axonless phenotype, providing further evidence that regulation of axonogenesis by hnRNP K occurs largely through pleiotropic effects on cytoskeletal-associated targets. These experiments provide evidence that hnRNP K is the nexus of a novel post-transcriptional regulatory module controlling the synthesis of proteins that integrate all three cytoskeletal polymers to form the axon.
    Document Type:
    Reference
    Product Catalog Number:
    07-330
    Product Catalog Name:
    Anti-Partitioning-defective 3 Antibody