Millipore Sigma Vibrant Logo
 

rabbit+anti-calbindin+d-28k


6 Results Advanced Search  
Showing
Products (0)
Documents (6)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. 19373512

    The Notch signaling pathway is known to have multiple roles during development of the inner ear. Notch signaling activates transcription of Hes5, a homologue of Drosophila hairy and enhancer of split, which encodes a basic helix-loop-helix transcriptional repressor. Previous studies have shown that Hes5 is expressed in the cochlea during embryonic development, and loss of Hes5 leads to overproduction of auditory and vestibular hair cells. However, due to technical limitations and inconsistency between previous reports, the precise spatial and temporal pattern of Hes5 expression in the postnatal and adult inner ear has remained unclear. In this study, we use Hes5-GFP transgenic mice and in situ hybridization to report the expression pattern of Hes5 in the inner ear. We find that Hes5 is expressed in the developing auditory epithelium of the cochlea beginning at embryonic day 14.5 (E14.5), becomes restricted to a particular subset of cochlear supporting cells, is downregulated in the postnatal cochlea, and is not present in adults. In the vestibular system, we detect Hes5 in developing supporting cells as early as E12.5 and find that Hes5 expression is maintained in some adult vestibular supporting cells. In order to determine the effect of hair cell damage on Notch signaling in the cochlea, we damaged cochlear hair cells of adult Hes5-GFP mice in vivo using injection of kanamycin and furosemide. Although outer hair cells were killed in treated animals and supporting cells were still present after damage, supporting cells did not upregulate Hes5-GFP in the damaged cochlea. Therefore, absence of Notch-Hes5 signaling in the normal and damaged adult cochlea is correlated with lack of regeneration potential, while its presence in the neonatal cochlea and adult vestibular epithelia is associated with greater capacity for plasticity or regeneration in these tissues; which suggests that this pathway may be involved in regulating regenerative potential.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Foxp4 is essential in maintenance of PURKINJE cell dendritic arborization in the mouse cerebellum. 20951773

    Purkinje cells (PCs) are one of the principal neurons in the cerebellar cortex that play a central role in the coordination of fine-tuning body movement and balance. To acquire normal cerebellum function, PCs develop extensive dendritic arbors that establish synaptic connections with the parallel fibers of granule cells to form the proper neuronal circuitry. Therefore, dendritic arborization of PCs is an important developmental step to construct the mature neural network in the cerebellum. However, the genetic control of this process is not fully understood. In this study, Foxp4, a forkhead transcription factor that is expressed specifically in migrating and mature PCs of cerebellum from embryonic stages to adulthood, was knocked down by small interfering RNA (siRNA) in organotypic cerebellar slice culture. When Foxp4 expression was knocked down at postnatal day 5 (P5), no abnormalities for early dendritic remodeling of PCs were observed. However, when Foxp4 was knocked down in P10 cerebellar slices, the organization of PC dendritic arbors was highly impaired, leaving hypoplastic but non-apoptotic cell bodies. The radial alignment of Bergmann glial fibers that associated with PC dendrites was also lost. These results suggest that Foxp4 is dispensable for the early PC dendrite outgrowth, but is essential for the maintenance of PC dendritic arborization and subsequent association with Bergmann glial fibers.
    Document Type:
    Reference
    Product Catalog Number:
    AB1778
  • Caytaxin deficiency disrupts signaling pathways in cerebellar cortex. 17092653

    The genetically dystonic (dt) rat, an autosomal recessive model of generalized dystonia, harbors an insertional mutation in Atcay. As a result, dt rats are deficient in Atcay transcript and the neuronally-restricted protein caytaxin. Previous electrophysiological and biochemical studies have defined olivocerebellar pathways, particularly the climbing fiber projection to Purkinje cells, as sites of significant functional abnormality in dt rats. In normal rats, Atcay transcript is abundantly expressed in the granular and Purkinje cell layers of cerebellar cortex. To better understand the consequences of caytaxin deficiency in cerebellar cortex, differential gene expression was examined in dt rats and their normal littermates. Data from oligonucleotide microarrays and quantitative real-time reverse transcriptase-PCR (QRT-PCR) identified phosphatidylinositol signaling pathways, calcium homeostasis, and extracellular matrix interactions as domains of cellular dysfunction in dt rats. In dt rats, genes encoding the corticotropin-releasing hormone receptor 1 (CRH-R1, Crhr1) and plasma membrane calcium-dependent ATPase 4 (PMCA4, Atp2b4) showed the greatest up-regulation with QRT-PCR. Immunocytochemical experiments demonstrated that CRH-R1, CRH, and PMCA4 were up-regulated in cerebellar cortex of mutant rats. Along with previous electrophysiological and pharmacological studies, our data indicate that caytaxin plays a critical role in the molecular response of Purkinje cells to climbing fiber input. Caytaxin may also contribute to maturational events in cerebellar cortex.
    Document Type:
    Reference
    Product Catalog Number:
    AB1778
  • Tissue transglutaminase crosslinks ataxin-1: possible role in SCA1 pathogenesis. 17045396

    Transglutaminase type 2 (TG2) has recently been implicated in crosslinking of mutant huntingtin protein into aggregates. Here we show that TG2 also crosslinks spinocerebellar ataxia-1 (SCA1) gene product ataxin-1. HeLa cell lysates expressing GFP tagged ataxin-1 with 2, 30 or 82 glutamines showed covalent crosslinking of ataxin-1 when incubated with exogenously added TG2. This crosslinking was inhibited by TG2 inhibitor cystamine. SCA1 transgenic mice which overexpress the mutant ataxin-1 in cerebellar Purkinje cells showed elevated nuclear TG2 in the absence of ataxin-1 nuclear aggregates. The addition of purified TG2 to the nuclear extracts or addition of SCA1 nuclear TG2 to GFP-Q82 HeLa cell lysates resulted in the formation of insoluble aggregates. These data indicate that ataxin-1 is a substrate of TG2. Further, in SCA1 TG2 may translocate to the nucleus in response to nuclear accumulation of mutant ataxin-1 at early stages of the disease.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1574
    Product Catalog Name:
    Anti-Polyglutamine-Expansion Diseases Marker Antibody, clone 5TF1-1C2
  • Metabotropic glutamate receptors modulate the NMDA- and AMPA-induced gene expression in neocortical interneurons. 16407481

    Group I metabotropic glutamate receptors (mGluRIs) can be colocalized with ionotropic glutamate receptors in postsynaptic membranes. We have investigated whether mGluRIs alter the gene transcription induced by N-methyl-D-aspartate (NMDA) and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolpropionic acid (AMPA) receptors in rat neocortical gamma-aminobutyric acid (GABA) interneurons. In cultures of dissociated interneurons, the mGluRI antagonists LY367385 and MPEP reduced the increase in phosphorylation of the transcription factor CREB induced by NMDA as well as the expression of the proenkephalin (PEnk) gene. In contrast, they enhanced the AMPA-induced CREB phosphorylation and PEnk gene expression. Stimulation of the mGluRIs was due to network activity that caused the release of endogenous glutamate and could be blocked by tetrodotoxin. In organotypic cultures of neocortex, endogenous glutamate enhanced the PEnk gene expression by acting on NMDA and AMPA receptors. These effects were modulated via mGluRIs. In patch-clamp experiments and in biochemical studies on receptor density, stimulation of mGluRIs acutely affected NMDA receptor currents but had no long-term effect on NMDA receptor density at the cell surface. In contrast, stimulation of mGluRIs decreased the density of AMPA receptors located at the cell surface. Our results suggest that mGluRIs regulate the glutamate-induced gene expression in neocortical interneurons in a physiologically relevant manner.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Distribution of the parvalbumin, calbindin-D28K and calretinin immunoreactivity in globus pallidus of the Brazilian short-tailed opossum (Monodelphis domestica). 18320720

    This study describes the topography, borders and divisions of the globus pallidus in the Brazilian short-tailed opossum (Monodelphis domestica) and distribution of the three calcium binding proteins, parvalbumin (PV), calbindin D-28k (CB) and calretinin (CR) in that nucleus. The globus pallidus of the opossum consists of medial and lateral parts that are visible with Nissl or Timm's staining and also in PV and CR immunostained sections. Neurons of the globus pallidus expressing these proteins were classified into three types on the basis of size and shape of their soma and dendritic tree. Type 1 neurons had medium-sized fusiform soma with dendrites sprouting from the opposite poles. Neurons of the type 2 had medium-to-large, multipolar soma with scarce, thin dendrites. Cell bodies of type 3 neurons were small and either ovoid or round. Immunostaining showed that the most numerous were neurons expressing PV that belonged to all three types. Density of the PV-immunopositive fibers and puncta correlated with the density of the PV-labeled neurons. Labeling for CB resulted mainly in the light staining of neuropil in both parts of the nucleus, while the CB-expressing cells (mainly of the type 2) were scarce and placed only along the border of the globus pallidus and putamen. Staining for calretinin resulted in labeling almost exclusively the immunoreactive puncta and fibers that were distributed with medium-to-high density throughout the nucleus. Close to the border of globus pallidus with the putamen these fibers (probably dendrites) were long, thin and varicous, while more medially bundles of thick, short and smooth fibers predominated. Single CR-ir neurons (all of the type 3) were scattered through the globus pallidus. Colocalization of two calcium binding proteins in one neuron was. never observed. The CB-ir puncta (probably terminals of axons projecting to the nucleus) frequently formed basket-like structures around the PV-ir neurons. Therefore, the globus pallidus in the opossum, much as that in the rat, consists of a heterogeneous population of neurons, probably playing diversified functions.
    Document Type:
    Reference
    Product Catalog Number:
    AB5054
  • «
  • <
  • 1
  • >
  • »