Millipore Sigma Vibrant Logo
 

western+blot+test


63 Results Advanced Search  
Showing
Products (0)
Documents (59)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Cautionary notes on the use of NF-κB p65 and p50 antibodies for CNS studies. 21999414

    The characterization and cellular localization of transcription factors like NF-κB requires the use of antibodies for western blots and immunohistochemistry. However, if target protein levels are low and the antibodies not well characterized, false positive data can result. In studies of NF-κB activity in the CNS, antibodies detecting NF-κB proteins have been used to support the finding that NF-κB is constitutively active in neurons, and activity levels are further increased by neurotoxic treatments, glutamate stimulation, or elevated synaptic activity. The specificity of the antibodies used was analyzed in this study.Selectivity and nonselectivity of commonly used commercial and non-commercial p50 and p65 antibodies were demonstrated in western blot assays conducted in tissues from mutant gene knockout mice lacking the target proteins.A few antibodies for p50 and p65 each mark a single band at the appropriate molecular weight in gels containing proteins from wildtype tissue, and this band is absent in proteins from knockout tissues. Several antibodies mark proteins that are present in knockout tissues, indicating that they are nonspecific. These include antibodies raised against the peptide sequence containing the nuclear localization signals of p65 (MAB3026; Chemicon) and p50 (sc-114; Santa Cruz). Some antibodies that recognize target proteins at the correct molecular weight still fail in western blot analysis because they also mark additional proteins and inconsistently so. We show that the criterion for validation by use of blocking peptides can still fail the test of specificity, as demonstrated for several antibodies raised against p65 phosphorylated at serine 276. Finally, even antibodies that show specificity in western blots produce nonspecific neuronal staining by immunohistochemistry.We note that many of the findings in the literature about neuronal NF-κB are based on data garnered with antibodies that are not selective for the NF-κB subunit proteins p65 and p50. The data urge caution in interpreting studies of neuronal NF-κB activity in the brain.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. 15466318

    Cannabinoid receptors type 1 (CB1) play a central role in both short-term and long-term extinction of auditory-cued fear memory. The molecular mechanisms underlying this function remain to be clarified. Several studies indicated extracellular signal-regulated kinases (ERKs), the phosphatidylinositol 3-kinase with its downstream effector AKT, and the phosphatase calcineurin as potential molecular substrates of extinction behavior. To test the involvement of these kinase and phosphatase activities in CB1-dependent extinction of conditioned fear behavior, conditioned CB1-deficient mice (CB1(-/-)) and wild-type littermates (CB1(+/+)) were sacrificed 30 min after recall of fear memory, and activation of ERKs, AKT, and calcineurin was examined by Western blot analysis in different brain regions. As compared with CB1(+/+), the nonreinforced tone presentation 24 h after auditory-cued fear conditioning led to lower levels of phosphorylated ERKs and/or calcineurin in the basolateral amygdala complex, ventromedial prefrontal cortex, dorsal hippocampus, and ventral hippocampus of CB1(-/-). In contrast, higher levels of phosphorylated p44 ERK and calcineurin were observed in the central nucleus of the amygdala of CB1(-/-). Phosphorylation of AKT was more pronounced in the basolateral amygdala complex and the dorsal hippocampus of CB1(-/-). We propose that the endogenous cannabinoid system modulates extinction of aversive memories, at least in part via regulation of the activity of kinases and phosphatases in a brain structure-dependent manner.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4
  • Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. 16873457

    The aim of this study was to test the hypothesis that swimming training might impact differentially myostatin expression in skeletal muscles, depending on fibre type composition, and in cardiac muscle of rats. Myostatin expression was analysed by real time reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry of the red deep portion (mainly composed of slow and type II A fibres) and in the superficial, white portion (composed of fast type II X and II B fibres) of the gastrocnemius muscle in adult male Wistar rats: (i) subjected to two consecutive swimming bouts for 3 h; (ii) subjected to intensive swimming training for 4 weeks; and (iii) sedentary control rats. Myostatin mRNA content was in all cases higher in white than in red muscles. Two bouts of swimming did not alter myostatin expression, whereas swimming training for 4 weeks resulted in a significant reduction of myostatin mRNA contents, significant both in white and red muscles but more pronounced in white muscles. Western blot did not detect any change in the amount of myostatin protein. Immunohistochemistry showed that, in control rats, myostatin was localized in presumptive satellite cells of a few muscle fibres. After training, the number of myostatin-positive spots decreased significantly. Myostatin mRNA content in cardiac muscle was lower than in skeletal muscle and was significantly increased by swimming training. In conclusion, the results obtained showed that intense training caused a decreased expression of myostatin mRNA in white and red skeletal muscles but an increase in cardiac muscle.
    Document Type:
    Reference
    Product Catalog Number:
    AB2034
    Product Catalog Name:
    Anti-Laminin Antibody
  • Decreased APOE-containing HDL subfractions and cholesterol efflux capacity of serum in mice lacking Pcsk9. 23883163

    Studies in animals showed that PCSK9 is involved in HDL metabolism. We investigated the molecular mechanism by which PCSK9 regulates HDL cholesterol concentration and also whether Pcsk9 inactivation might affect cholesterol efflux capacity of serum and atherosclerotic fatty streak volume.Mass spectrometry and western blot were used to analyze the level of apolipoprotein E (APOE) and A1 (APOA1). A mouse model overexpressing human LDLR was used to test the effect of high levels of liver LDLR on the concentration of HDL cholesterol and APOE-containing HDL subfractions. Pcsk9 knockout males lacking LDLR and APOE were used to test whether LDLR and APOE are necessary for PCSK9-mediated HDL cholesterol regulation. We also investigated the effects of Pcsk9 inactivation on cholesterol efflux capacity of serum using THP-1 and J774.A1 macrophage foam cells and atherosclerotic fatty streak volume in the aortic sinus of Pcsk9 knockout males fed an atherogenic diet.APOE and APOA1 were reduced in the same HDL subfractions of Pcsk9 knockout and human LDLR transgenic male mice. In Pcsk9/Ldlr double-knockout mice, HDL cholesterol concentration was lower than in Ldlr knockout mice and higher than in wild-type controls. In Pcsk9/Apoe double-knockout mice, HDL cholesterol concentration was similar to that of Apoe knockout males. In Pcsk9 knockout males, THP-1 macrophage cholesterol efflux capacity of serum was reduced and the fatty streak lesion volume was similar to wild-type controls.In mice, LDLR and APOE are important factors for PCSK9-mediated HDL regulation. Our data suggest that, although LDLR plays a major role in PCSK9-mediated regulation of HDL cholesterol concentration, it is not the only mechanism and that, regardless of mechanism, APOE is essential. Pcsk9 inactivation decreases the HDL cholesterol concentration and cholesterol efflux capacity in serum, but does not increase atherosclerotic fatty streak volume.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. 12853586

    BACKGROUND: Most patients with multiple sclerosis initially present with a clinically isolated syndrome. Despite the fact that clinically definite multiple sclerosis will develop in up to 80 percent of these patients, the course of the disease is unpredictable at its onset and requires long-term observation or repeated magnetic resonance imaging (MRI). We investigated whether the presence of serum antibodies against myelin oligodendrocyte glycoprotein (MOG) and myelin basic protein (MBP) in patients with a clinically isolated syndrome predicts the interval to conversion to clinically definite multiple sclerosis. METHODS: A total of 103 patients with a clinically isolated syndrome, positive findings on cerebral MRI, and oligoclonal bands in the cerebrospinal fluid were studied. At base line, serum samples were collected to test for anti-MOG and anti-MBP antibodies with Western blot analysis, and the lesions detected by cerebral MRI were quantified. Neurologic examinations for relapse or disease progression (defined as conversion to clinically definite multiple sclerosis) were performed at base line and subsequently every three months. RESULTS: Patients with anti-MOG and anti-MBP antibodies had relapses more often and earlier than patients without these antibodies. Only 9 of 39 antibody-seronegative patients (23 percent) had a relapse, and the mean (+/-SD) time to relapse was 45.1+/-13.7 months. In contrast, 21 of 22 patients (95 percent) with antibodies against both MOG and MBP had a relapse within a mean of 7.5+/-4.4 months, and 35 of 42 patients (83 percent) with only anti-MOG antibodies had a relapse within 14.6+/-9.6 months (P0.001 for both comparisons with antibody-seronegative patients). The adjusted hazard ratio for the development of clinically definite multiple sclerosis was 76.5 (95 percent confidence interval, 20.6 to 284.6) among the patients who were seropositive for both antibodies and 31.6 (95 percent confidence interval, 9.5 to 104.5) among the patients who were seropositive only for anti-MOG antibodies, as compared with the seronegative patients. CONCLUSIONS: Analysis of antibodies against MOG and MBP in patients with a clinically isolated syndrome is a rapid, inexpensive, and precise method for the prediction of early conversion to clinically definite multiple sclerosis. This finding may be important for the counseling and care of patients with a first demyelinating event suggestive of multiple sclerosis.
    Document Type:
    Reference
    Product Catalog Number:
    MAB381
    Product Catalog Name:
    Anti-Myelin Basic Protein Antibody, a.a. 119-131, clone 2
  • Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. 21616098

    The gelatinases, matrix metalloproteinase (MMP)-9 and -2, are produced as latent, inactive enzymes that can be proteolytically activated by a number of proteases. In many normal and pathological conditions, where the expression of MMPs is deregulated, changes in the expression of other proteases have also been reported. Human kallikrein-related peptidase 7 (KLK7), a chymotryptic-like serine protease, is overexpressed in many different types of neoplastic conditions, which have also been shown to express high levels of both MMP-9 and -2. Since the activation of MMPs by KLK7 has never been examined, we sought to determine whether KLK7 can activate these MMPs. To test this hypothesis KLK7 was incubated with the recombinant MMPs and the products of the reaction were analyzed for their activity. Incubation of proMMP-9 with KLK7 resulted in the production of a novel truncated, active MMP-9 lacking the C-terminal hemopexin domains. In contrast, KLK7 degraded, but did not activate, proMMP-2. The novel activation of proMMP-9 by KLK7 was further confirmed using conditioned medium prepared from an MMP-9-expressing cell line, MDA-MMP-9. Our results clearly establish that KLK7 activates proMMP-9 to produce a novel truncated, active MMP-9 product not generated by other proteases. These findings suggest that KLK7 may play an important role in the activation of MMP-9 in tumors that express high levels of both these proteases and the resulting truncated MMP may possess altered substrate specificities compared with full-length MMP-9 activated by other proteases.
    Document Type:
    Reference
    Product Catalog Number:
    AB19016
    Product Catalog Name:
    Anti-MMP-9 Antibody, Catalytic domain
  • Retinal microglial activation and inflammation induced by amadori-glycated albumin in a rat model of diabetes. 21317295

    During diabetes, retinal microglial cells are activated to release inflammatory cytokines that initiate neuronal loss and blood-retinal barrier breakdown seen in diabetic retinopathy (DR). The mechanism by which diabetes activates microglia to release those inflammatory mediators is unclear and was therefore elucidated.Microglia activation was characterized in streptozocin-injected rats and in isolated microglial cells using immunofluorescence, enzyme-linked immunosorbent assay, RT-PCR, and Western blot analyses.In 8-week diabetic retina, phospho-extracellular signal-related kinase (ERK) and P38 mitogen-activated protein kinases were localized in microglia, but not in Mueller cells or astrocytes. At the same time, Amadori-glycated albumin (AGA)-like epitopes were featured in the regions of microglia distribution, implicating a pathogenic effect on microglial activation. To test this, diabetic rats were treated intravitreally with A717, a specific AGA-neutralizing antibody, or murine IgG. Relative to nondiabetic rats, diabetic rats (IgG-treated) manifested 3.9- and 7.9-fold increases in Iba-1 and tumor necrosis factor (TNF)-α mRNAs, respectively. Treatment of diabetic rats with A717 significantly attenuated overexpression of these mRNAs. Intravitreal injection of AGA per se in normal rats resulted in increases of Iba-1 expression and TNF-α release. Guided by these results, a cultured retinal microglia model was developed to study microglial response after AGA treatment and the mechanistic basis behind this response. The results showed that formation of reactive oxygen species and subsequent activation of ERK and P38, but not Jun NH2-terminal kinase, are molecular events underpinning retinal microglial TNF-α release during AGA treatment.These results provide new insights in understanding the pathogenesis of early DR, showing that the accumulated AGA within the diabetic retina elicits the microglial activation and secretion of TNF-α. Thus, intervention trials with agents that neutralize AGA effects may emerge as a new therapeutic approach to modulate early pathologic pathways long before the occurrence of vision loss among patients with diabetes.
    Document Type:
    Reference
    Product Catalog Number:
    AB5541
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody
  • PDGF-C and -D induced proliferation/migration of human RPE is abolished by inflammatory cytokines. 18055825

    The role of growth factors and inflammation in regulating retinal pigment epithelial (RPE) function is complex and still poorly understood. The present study investigated human RPE cell proliferation and migration mediated by platelet-derived growth factor (PDGF) and inflammatory cytokines.Human fetal RPE (hfRPE) cells were obtained as previously described. Gene expressions of PDGF isoforms and their receptors were detected using real-time PCR. Protein expression, activity, and localization of PDGFR-alpha and -beta were analyzed by Western blot and immunohistochemistry. BrdU incorporation and wound healing assays were used to test the effects of different PDGF isoforms and inflammatory cytokines on hfRPE proliferation and migration. Annexin-V and phalloidin staining were used to detect apoptosis and the actin cytoskeleton, respectively.PDGF-C and PDGF-D proteins are expressed in native human adult RPE, and mRNA levels are up to 100-fold higher than PDGF-A and -B. PDGFR-alpha and -beta proteins are expressed in native adult RPE and hfRPE (mainly localized to the apical membrane). In hfRPE, these receptors can be activated by PDGF-CC and -DD. PDGF-CC, -DD, and -BB significantly increased hfRPE proliferation, whereas PDGF-DD, -BB, and -AB significantly increased cell migration. An inflammatory cytokine mixture (TNF-alpha/IL-1beta/IFN-gamma) completely inhibited the stimulatory effect of PDGF-BB, -CC, and -DD; in contrast, this mixture stimulated the proliferation of choroidal cells. This inflammatory cytokine mixture also induced apoptosis, significant disruption of actin filaments and zonula occludens (ZO-1), and a decrease in transepithelial resistance.These results suggest that proinflammatory cytokines in vivo can inhibit the proliferative effect of PDGF on human RPE and, at the same time, stimulate the proliferation of choroidal cells. They also suggest an important role of proinflammatory cytokines in overcoming local proliferative/wound-healing responses, thereby controlling the development of disease processes at the retina/RPE/choroid interface.
    Document Type:
    Reference
    Product Catalog Number:
    07-021
  • DNA methylation of claudin-6 promotes breast cancer cell migration and invasion by recruiting MeCP2 and deacetylating H3Ac and H4Ac. 27461117

    Claudin-6 (CLDN6), a member of claudin transmembrane protein family, has recently been reported to be undetectable or at low levels in human breast cancer cell lines and tissues and plays a role in suppression of migration and invasion in breast cancer cells. In addition, it is reported that CLDN6 expression is regulated by DNA methylation in various human cancers and cell lines. However, it is unclear how DNA methylation regulates CLDN6 expression. Here we show the mechanism by which DNA methylation regulates CLDN6 expression in human breast cancer cell line MCF-7.RT-PCR, Western blot and immunofluorescent staining were utilized to investigate CLDN6 expression in breast cancer tissues and MCF-7 cells. Methylation-Specific PCR (MSP) was applied to determine DNA methylation status in CLDN6 gene promoter region. Wound-healing assay and invasion assay were utilized to test mobility of MCF-7 cells treated with 5-aza-dC (DNA methyltransferase inhibitor). MeCP2 binding, H3Ac and H4Ac in CLDN6 promoter region were analyzed by ChIP assay. Nuclease accessibility assay was performed for analysis of the chromatin conformation of CLDN6 gene. To study the role of CLDN6 in malignant progression, we used RNAi to knockdown CLDN6 expression in MCF-7 cells treated with 5-aza-dC, and examined the mobility of MCF-7 cells by wound-healing assay and invasion assay.5-aza-dC and TSA (histone deacetylase inhibitor) application induced CLDN6 expression in MCF-7 cells respectively and synergistically. 5-aza-dC treatment induced CLDN6 demethylation, inhibited MeCP2 binding to CLDN6 promoter and increased H3Ac and H4Ac in the promoter. In addition, TSA increased H4Ac, not H3Ac in the promoter. The chromatin structure of CLDN6 gene became looser than the control group after treating with 5-aza-dC in MCF-7 cells. 5-aza-dC up-regulated CLDN6 expression and suppressed migration and invasion in MCF-7 cells, whereas CLDN6 silence restored tumor malignance in MCF-7 cells.DNA methylation down-regulates CLDN6 expression through MeCP2 binding to the CLDN6 promoter, deacetylating H3 and H4, and altering chromatin structure, consequently promoting migratory and invasive phenotype in MCF-7 cells.
    Document Type:
    Reference
    Product Catalog Number:
    17-409
    Product Catalog Name:
    EZ-Magna ChIP™ G - Chromatin Immunoprecipitation Kit
  • Brain-derived neurotrophic factor-tyrosine kinase B pathway mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration ... 21848649

    We studied the effects of water deprivation (WD) on the phosphorylation of tyrosine kinase B (TrkB) and NMDA receptor subunits in the supraoptic nucleus (SON) of the rat. Laser capture microdissection and quantitative reverse transcriptase polymerase chain reaction was used to demonstrate brain-derived neurotrophic factor (BDNF) and TrkB gene expression in vasopressin SON neurones. Immunohistochemistry confirmed BDNF staining in vasopressin neurones, whereas staining for phosphorylated TrkB was increased following WD. Western blot analysis of brain punches containing the SON revealed that tyrosine phosphorylation of TrkB (pTrkBY(515)), serine phosphorylation of NR1 (pNR1S(866) or pNR1) and tyrosine phosphorylation of NR2B subunits (pNR2BY(1472) or pNR2B) were significantly increased in WD animals compared to controls. Access to water for 2 h reduced pTrkBY(515) content to control levels without affecting pNR1 or pNR2B. Four hours of rehydration was needed to reduce pNR1 and pNR2B to control levels. To test whether increased phosphorylation of TrkB in the present study is mediated by BDNF, a group of animals were instrumented with right SON cannula coupled to mini-osmotic pumps filled with vehicle or TrkB-Fc fusion protein, which prevents BDNF binding to TrkB. In the left SON contralateral to the cannula, TrkB phosphorylation was significantly enhanced following WD. Separate analysis of the right SON, which received TrkB-Fc, showed that the TrkB receptor phosphorylation following WD was significantly attenuated. Although increased pNR1S(866) following WD was not affected by local infusion of TrkB-Fc, pNR2BY(1472) was significantly reduced. Co-immunoprecipitation revealed an increased physical interaction between Fyn kinase and NR2B and TrkB in the SON following WD. Thus, activation of TrkB in the SON following WD may affect cellular excitability through the phosphorylation of NR2B subunits.
    Document Type:
    Reference
    Product Catalog Number:
    05-920
    Product Catalog Name:
    Anti-NR2B Antibody, clone BWJHL