Millipore Sigma Vibrant Logo
 

Millipore


10516 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (6,534)
  • (2,825)
  • (257)
  • (35)
  • (28)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Mutagenicity testing of condensates of smoke from titanium dioxide/hexachloroethane and zinc/hexachloroethane pyrotechnic mixtures. 2027339

    Condensates of smoke from titanium dioxide/hexachloroethane and zinc/hexachloroethane pyrotechnic mixtures were investigated for their potential to produce genetic damage in the tester strains TA98, TA100, TA1535 and TA1537 of Salmonella typhimurium and in the mouse bone marrow micronucleus assay. Both smoke condensates contained several chlorinated hydrocarbons among which tetrachloroethylene, hexachloroethane, hexachlorobutadiene and hexachlorobenzene were identified by GC/MS. Condensate of smoke from titanium dioxide/hexachloroethane showed a dose-related positive response in the Salmonella assay with strains TA98 and TA100 in the absence of metabolic activation from rat liver S9 fraction. Both smoke condensates were negative in the micronucleus assay but produced a small but significant depression of erythropoietic activity. The results indicate that smoke condensate from titanium dioxide/hexachloroethane mixtures contains unidentified compound(s) that may be considered mutagenic in the Salmonella assay.
    Tipo de documento:
    Referencia
    Referencia del producto:
    20-108
    Nombre del producto:
    Assay Dilution Buffer I (ADBI)
  • CTCF mediates the cell-type specific spatial organization of the Kcnq5 locus and the local gene regulation. 22347474

    Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-729
    Nombre del producto:
    Anti-CTCF Antibody
  • Prenatal LPS increases inflammation in the substantia nigra of Gdnf heterozygous mice. 20969653

    Prenatal systemic inflammation has been implicated in neurological diseases, but optimal animal models have not been developed. We investigated whether a partial genetic deletion of glial cell line-derived neurotrophic factor (Gdnf(+/-)) increased vulnerability of dopamine (DA) neurons to prenatal lipopolysaccharide (LPS). LPS [0.01 mg/kg intraperitoneal (i.p.)] or saline was administered to wild-type (WT) or Gdnf(+/-) pregnant mice on gestational day 9.5. Male offspring were examined at 3 weeks, 3 and 12 months of age. There was a progressive degeneration of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) with age in Gdnf(+/-) but not in WT mice, with no observed effects on locus coeruleus (LC) noradrenergic neurons or DA neurons of the ventral tegmental area. Inflammatory markers were elevated in SN of LPS treated offspring, with exacerbation in Gdnf(+/-) mice. Intracellular accumulation of α-synuclein (α-syn) immunoreactivity in DA neurons of SN was observed in all groups of Gdnf(+/-) and in WT mice with prenatal LPS, with altered distribution between pars reticulata (pr) and pars compacta (pc). The findings suggest that prenatal LPS leads to accelerated neuropathology in the SN with age, and that a partial loss of GDNF exacerbates these effects, providing a novel model for age-related neuropathology of the nigrostriatal DA system.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1591P
    Nombre del producto:
    Anti-Dopamine Transporter Antibody
  • Knockout of the γ-aminobutyric acid receptor subunit α4 reduces functional δ-containing extrasynaptic receptors in hippocampal pyramidal cells at the onset of puberty. 22418059

    Increased plasmalemmal localization of α4βδ GABA(A) receptors (GABARs) occurs in the hippocampal pyramidal cells of female mice at pubertal onset (Shen et al., 2010). This increase occurs on both dendritic spines and shafts of CA1 pyramidal cells and is in response to hormone fluctuations that occur at pubertal onset. However, little is known about how the α4 and δ subunits individually mediate the formation of functional, plasmalemmal α4βδ GABARs. To determine whether expression of the α4 subunit is necessary for plasmalemmal δ subunit localization at pubertal onset, electron microscopic-immunocytochemistry (EM-ICC) was employed. CA1 pyramidal cells of female α4 knockout (KO) mice were tested for plasmalemmal levels of the δ subunit within dendritic spine and shaft profiles at the onset of puberty. EM-ICC revealed that the α4 and δ subunits localize on dendritic spines and shafts at sites extrasynaptic to GABAergic input at pubertal onset in tissue of wild-type (WT) mice. At pubertal onset, plasmalemmal localization of the δ subunit is reduced 45.9% on dendritic spines, and 56.7% on dendritic shafts with KO of the α4 subunit, as compared to WT tissue, yet levels of intracellular δ immunoreactivity remain unchanged. The decline in plasmalemmal localization is manifested as decreased responsiveness to the GABA agonist gaboxadol at concentrations that are selective for δ-containing GABARs. Additionally, α4 KO mice have larger dendritic spine and shaft profiles. Our findings demonstrate that α4 subunit expression strongly influences the pubertal increase of δ subunits at the plasma membrane, and that genetic deletion of α4 serves as a functional knock-down of δ-containing GABARs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1506
    Nombre del producto:
    Anti-Glutamate Receptor 2 & 3 Antibody
  • Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. 20029418

    BACKGROUND: Class III beta-tubulin overexpression is a marker of resistance to microtubule disruptors in vitro, in vivo and in the clinic for many cancers, including breast cancer. The aims of this study were to develop a new model of class III beta-tubulin expression, avoiding the toxicity associated with chronic overexpression of class III beta-tubulin, and study the efficacy of a panel of clinical and pre-clinical drugs in this model. METHODS: MCF-7 (ER+ve) and MDA-MB-231 (ER-ve) were either transfected with pALTER-TUBB3 or siRNA-tubb3 and 24 h later exposed to test compounds for a further 96 h for proliferation studies. RT-PCR and immunoblotting were used to monitor the changes in class III beta-tubulin mRNA and protein expression. RESULTS: The model allowed for subtle changes in class III beta-tubulin expression to be achieved, which had no direct effect on the viability of the cells. Class III beta-tubulin overexpression conferred resistance to paclitaxel and vinorelbine, whereas downregulation of class III beta-tubulin rendered cells more sensitive to these two drugs. The efficacy of the colchicine-site binding agents, 2-MeOE2, colchicine, STX140, ENMD1198 and STX243 was unaffected by the changes in class III beta-tubulin expression. CONCLUSION: These data indicate that the effect of class III beta-tubulin overexpression may depend on where the drug's binding site is located on the tubulin. Therefore, this study highlights for the first time the potential key role of targeting the colchicine-binding site, to develop new treatment modalities for taxane-refractory breast cancer.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1637
    Nombre del producto:
    Anti-Tubulin Antibody, beta III isoform, CT, clone TU-20 (Similar to TUJ1)
  • Cleavage of fibromodulin in cartilage explants involves removal of the N-terminal tyrosine sulfate-rich region by proteolysis at a site that is sensitive to matrix metall ... 14660626

    Integrity of cartilage fails in joint disease. The current work aimed to identify candidate active proteinases in joint diseases using an in vitro model for cartilage degradation induced by interleukin-1. A critical event in the process of cartilage destruction in joint disease is the failure of the collagen fiber network to maintain integrity. Proteins binding to the surface of the fibers are likely early points of failure. Fibromodulin, a member of the leucine-rich repeat protein family, is one predominant protein in cartilage and is known for its roles in the formation of collagen fibrils and sustained interaction with these formed fibers. Cleavage removes the tyrosine sulfate-rich region in the N terminus of fibromodulin. Whereas fibromodulin bound to collagen in tissue was digested, purified fibromodulin was not cleaved. In contrast an N-terminal 10-kDa fragment, Gln19-Lys98, of the protein generated by Lys-C digestion contains the cleavage site and was a substrate cleaved by the enzyme in medium from stimulated cultures. In solution, digestion of this substrate with matrix metalloproteinase (MMP)-2, -9, -8, and -13 demonstrated that only MMP-13 was capable to efficiently cleave it. The cleavage product obtained after MMP-13 digestion was identical to that observed in cleaved fibromodulin from cartilage explant cultures stimulated with interleukin-1. MMP-13 treatment of fresh articular cartilage also produced the fragment under study. The elucidation of the enzyme responsible for such cleavage may lead to treatment modalities involving its selective inhibition for patients suffering from arthritis. The known structure of the fragments permits the generation of neo-epitope antibodies to the cleavage site, which can be used to detect ongoing cartilage degradation in patients with arthritic disease, an important adjunct in monitoring disease progression, active disease, and efficacy of treatment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3308
    Nombre del producto:
    Anti-MMP-2 Antibody, a.a. 468-483 hMMP2, clone 42-5D11
  • GGF2 (Nrg1-?3) treatment enhances NG2(+) cell response and improves functional recovery after spinal cord injury. 22042562

    The adult spinal cord contains a pool of endogenous glial precursor cells, which spontaneously respond to spinal cord injury (SCI) with increased proliferation. These include oligodendrocyte precursor cells that express the NG2 proteoglycan and can differentiate into mature oligodendrocytes. Thus, a potential approach for SCI treatment is to enhance the proliferation and differentiation of these cells to yield more functional mature glia and improve remyelination of surviving axons. We previously reported that soluble glial growth factor 2 (GGF2)- and basic fibroblast growth factor 2 (FGF2)-stimulated growth of NG2(+) cells purified from injured spinal cord in primary culture. This study examines the effects of systemic administration of GGF2 and/or FGF2 after standardized contusive SCI in vivo in both rat and mouse models. In Sprague-Dawley rats, 1 week of GGF2 administration, beginning 24 h after injury, enhanced NG2(+) cell proliferation, oligodendrogenesis, chronic white matter at the injury epicenter, and recovery of hind limb function. In 2',3'-cyclic-nucleotide 3'-phosphodiesterase-enhanced green fluorescent protein mice, GGF2 treatment resulted in increased oligodendrogenesis and improved functional recovery, as well as elevated expression of the stem cell transcription factor Sox2 by oligodendrocyte lineage cells. Although oligodendrocyte number was increased chronically after SCI in GGF2-treated mice, no evidence of increased white matter was detected. However, GGF2 treatment significantly increased levels of P0 protein-containing peripheral myelin, produced by Schwann cells that infiltrate the injured spinal cord. Our results suggest that GGF2 may have therapeutic potential for SCI by enhancing endogenous recovery processes in a clinically relevant time frame.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5320
    Nombre del producto:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Metabotropic glutamate receptor 1 (mGluR1): antibody specificity and receptor expression in cultured primary neurons. 22155385

    The availability of high quality, well-characterized antibodies for molecular and cellular neuroscience studies is important. However, not all available antibodies are rigorously evaluated, nor are limitations of particular antibodies often reported. We have examined a panel of currently available mGluR1 antibodies and have identified which ones are selective for use by western blots and immunocytochemistry. We have also specifically determined whether the antibodies cross-react to recognize mGluR5, by examining (1) tissue from both mGluR1 and mGluR5 knock-out mice and (2) primary cortical cultures, in which mGluR5 is widely expressed but mGluR1 is not. Together, these data provide a baseline characterization of antibodies that can and cannot be reliably used in these types of studies, and will hopefully facilitate and positively impact the research efforts of others studying mGluR1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5675
    Nombre del producto:
    Anti-Metabotropic Glutamate Receptor 5 Antibody, pain
  • Pax6 is a key component of regulated glucagon secretion. 22778220

    The Pax6 transcription factor is crucial for pancreatic α-cells. Indeed, Pax6-deficient mouse models are characterized by markedly altered α-cell differentiation. Our objective was to investigate the role of Pax6 in glucagon secretion process. We used a Pax6-deficient model in rat primary enriched-α cells with specific small interfering RNA leading to a 70% knockdown of Pax6 expression. We first showed that Pax6 knockdown decreases glucagon biosynthesis as well as glucagon release. Through physiological assays, we demonstrated that the decrease of Pax6 affects specifically acute glucagon secretion in primary α-cell in response to glucose, palmitate, and glucose-dependent insulinotropic peptide (GIP) but not the response to arginine and epinephrine. We identified in Pax6 knockdown model that genes involved in glucagon secretion such as the glucokinase (GCK), G protein-coupled receptor (GPR40), and GIP receptor (GIPR) as well as the corresponding proteins were significantly decreased whereas the insulin receptor (IR) Kir6.2/Sur1, and glucose transporter 1 genes were not affected. We demonstrated that Pax6 directly binds and activates specific elements on the promoter region of the GPR40, GCK, and GIPR genes. Finally, through site-directed mutagenesis experiments, we showed that disruption of Pax6 binding on the GCK, GPR40, and GIPR gene promoters led to specific decreases of their activities in the αTC1.9 glucagon-producing cell line. Hence our results indicate that Pax6 acts on the regulation of glucagon secretion at least through the transcriptional control of GCK, GPR40, and GIPR. We propose that Pax6 is not only critical for glucagon biosynthesis but also for glucagon secretion particularly in response to nutrients.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB374
    Nombre del producto:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Dopamine D3-like receptors modulate anxiety-like behavior and regulate GABAergic transmission in the rat lateral/basolateral amygdala. 21270771

    Central among the brain regions that regulate fear/anxiety behaviors is the lateral/basolateral amygdala (BLA). BLA output is tightly controlled by the relative activity of two populations of inhibitory GABAergic interneurons, local feedback cells distributed throughout the nucleus, and feedforward cells found along the lateral paracapsular border of this subdivision. Recent studies suggest that dopamine (DA) can modulate the BLA GABAergic system, thus linking fear/anxiety states with mesolimbic reward/attentional processes. However, the precise dopaminergic mechanisms regulating the activity of the two BLA GABAergic neuron populations have not been fully explored. We therefore examined the effects of DA D3-like receptors on BLA-dependent anxiety-like behavior and neurophysiology. After confirming the presence of D3-like receptors within the BLA, we found that microinjection of a D3-selective antagonist into the BLA decreased anxiety-like behavior expressed in both the light/dark transition test and the elevated plus maze. Consistent with this, we found that in vitro D3-like receptor activation selectively inhibits synaptic transmission at both BLA feedback and feedforward GABAergic interneuron populations, with no effect on glutamatergic transmission. This inhibition of GABAergic transmission is a result of a D3-like receptor-mediated, dynamin-dependent process that presumably reflects endocytosis of postsynaptic GABA(A) receptors found on principal BLA neurons. Because environmental cues alter both DA release and relative activity states of the BLA, our data strongly suggest that DA, potentially acting through D3-like receptors, may suppress the relative contribution by inhibitory processes in the BLA and modify the expression of BLA-related behaviors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1786P
    Nombre del producto:
    Anti-Dopamine D3 Receptor Antibody, cytoplasmic domain