Millipore Sigma Vibrant Logo
 

assb


175 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (116)
  • (2)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Coordinated release of acylation stimulating protein (ASP) and triacylglycerol clearance by human adipose tissue in vivo in the postprandial period. 9555951

    The objective of this study was to determine whether Acylation Stimulating Protein (ASP) is generated in vivo by human adipose tissue during the postprandial period. After a fat meal, samples from 12 subjects were obtained (up to 6 h) from an arterialized hand vein and an anterior abdominal wall vein that drains adipose tissue. Veno-arterial (V-A) gradients across the subcutaneous adipose tissue bed were calculated. The data demonstrate that ASP is produced in vivo (positive V-A gradient) With maximal production at 3-5 h postprandially. The plasma triacylglycerol (TAG) clearance was evidenced by a negative V-A gradient. It increased substantially after 3 h and remained prominent until the final time point. There was, therefore, a close temporal coordination between ASP generation and TAG clearance. In contrast, plasma insulin and non-esterified fatty acid (NEFA) had an early (1-2 h) postprandial change. Fatty acid incorporation into adipose tissue (FIAT) was calculated from V-A glycerol and non-esterified fatty acid (NEFA) differences postprandially. FIAT was negative during the first hour, implying net fat mobilization. FIAT then became increasingly positive, implying net fat deposition, and overall followed the same time course as ASP and TAG clearance. There was a direct positive correlation between total ASP production and total FIAT (r = 0.566, P < 0.05). These data demonstrate that ASP is generated in vivo by human adipocytes and that this process is accentuated postprandially, supporting the concept that ASP plays an important role in clearance of TAG from plasma and fatty acid storage in adipose tissue.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). 23606740

    The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) is an important suppressor of hypoxia-inducible factor (HIF) activity. In addition to HIF-α, FIH-1 was previously shown to hydroxylate other substrates within a highly conserved protein interaction domain, termed the ankyrin repeat domain (ARD). However, to date, the biological role of FIH-1-dependent ARD hydroxylation could not be clarified for any ARD-containing substrate. The apoptosis-stimulating p53-binding protein (ASPP) family members were initially identified as highly conserved regulators of the tumour suppressor p53. In addition, ASPP2 was shown to be important for the regulation of cell polarity through interaction with partitioning defective 3 homolog (Par-3). Using mass spectrometry we identified ASPP2 as a new substrate of FIH-1 but inhibitory ASPP (iASPP) was not hydroxylated. We demonstrated that ASPP2 asparagine 986 (N986) is a single hydroxylation site located within the ARD. ASPP2 protein levels and stability were not affected by depletion or inhibition of FIH-1. However, FIH-1 depletion did lead to impaired binding of Par-3 to ASPP2 while the interaction between ASPP2 and p53, apoptosis and proliferation of the cancer cells were not affected. Depletion of FIH-1 and incubation with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) resulted in relocation of ASPP2 from cell-cell contacts to the cytosol. Our data thus demonstrate that protein interactions of ARD-containing substrates can be modified by FIH-1-dependent hydroxylation. The large cellular pool of ARD-containing proteins suggests that FIH-1 can affect a broad range of cellular functions and signalling pathways under certain conditions, for example, in response to severe hypoxia.
    Document Type:
    Reference
    Product Catalog Number:
    07-330
    Product Catalog Name:
    Anti-Partitioning-defective 3 Antibody
  • SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. 20869591

    Glutamine tract expansion triggers nine neurodegenerative diseases by conferring toxic properties to the mutant protein. In SCA1, phosphorylation of ATXN1 at Ser776 is thought to be key for pathogenesis. Here, we show that replacing Ser776 with a phosphomimicking Asp converted ATXN1 with a wild-type glutamine tract into a pathogenic protein. ATXN1[30Q]-D776-induced disease in Purkinje cells shared most features with disease caused by ATXN1[82Q] having an expanded polyglutamine tract. However, in contrast to disease induced by ATXN1[82Q] that progresses to cell death, ATXN1[30Q]-D776 failed to induce cell death. These results support a model where pathogenesis involves changes in regions of the protein in addition to the polyglutamine tract. Moreover, disease initiation and progression to neuronal dysfunction are distinct from induction of cell death. Ser776 is critical for the pathway to neuronal dysfunction, while an expanded polyglutamine tract is essential for neuronal death.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5504
    Product Catalog Name:
    Anti-Vesicular Glutamate Transporter 2 Antibody
  • Neurotransmitter-specific identification and characterization of neurons in the all-cone retina of Anolis carolinensis. II: Glutamate and aspartate. 1356423

    Immunocytochemical and autoradiographic methods were used to identify neurons in the pure cone retina of the lizard (Anolis carolinensis) that are likely to employ glutamate (GLU) or aspartate (ASP) as a neurotransmitter. GLU immunocytochemistry demonstrated high levels of endogenous GLU in all cone types and numerous bipolar cells. Moderate GLU levels were found in horizontal and ganglion cells. Müller cells and most amacrine cells had very low GLU levels. GLU immunoreactivity (GLU-IR) in the cones was present from the inner segment to the synaptic pedicle. A large spherical cell type with moderate GLU-IR was identified in the proximal inner plexiform layer (IPL). These cells also contain ASP and have been tentatively identified as amacrine cells. Uptake of [3H]-L-GLU labeled all retinal layers. All cone types and Müller cells sequestered [3H]-D-ASP, a substrate specific for the GLU transporter. Anti-ASP labeling was observed in cones, horizontal cells, amacrine cells, and cells in the ganglion cell layer. ASP immunoreactivity (ASP-IR) in the cones was confined to the inner segment. One ASP-containing pyriform amacrine cell subtype ramifying in IPL sublamina b was identified. Analysis of GLU-IR, ASP-IR, and GABA-IR on serial sections indicated that there were two distinct populations of horizontal cells in the Anolis retina: one containing GABA-IR, GLU-IR, and ASP-IR; and another type containing only GLU-IR and ASP-IR. Light GLU-IR was frequently found in GABA-containing amacrine cells but ASP-IR was not. The distinct distributions of GLU and ASP may indicate distinctly different roles for these amino acids. GLU, not ASP, is probably the major neurotransmitter in the cone-bipolar-ganglion cell pathway of the Anolis retina. Both GLU and ASP are present in horizontal cells and specific subpopulations of amacrine cells, but it is unclear if GLU or ASP have a neurotransmitter role in these cells.
    Document Type:
    Reference
    Product Catalog Number:
    AB133
    Product Catalog Name:
    Anti-Glutamate Antibody
  • Alveolar soft part sarcoma of the larynx: a case report of an unusual location with immunohistochemical and ultrastructural analyses. 18286485

    BACKGROUND: Alveolar soft part sarcoma (ASPS) is a rare mesenchymal neoplasm of uncertain origin. In this article, we report a case of ASPS occurring in the larynx, an extremely rare location for this rather unusual tumor. METHODS AND RESULTS: The patient was a 34-year-old Japanese woman who requested an examination for hoarseness. The tumor showed a proliferation of large polygonal cells with periodic-acid-Schiff-positive diastase-resistant intracytoplasmic granules, arranged in an alveolar growth pattern. The cytoplasm of the tumor cells was eosinophilic. Tumor cells were positive for vimentin and titin. Nuclear immunoreactivity for TFE3 was observed, and the Ki-67 labeling index was 14.7%. Ultrastructurally, electron-dense rod-shaped crystals were infrequently observed in the cytoplasm. This case was finally diagnosed as ASPS of the larynx. CONCLUSION: We discuss the histogenesis and differential diagnosis of ASPS with immunohistochemical and ultrastructural findings. TFE3 immunohistochemistry was found to be a very useful marker for the diagnosis of ASPS.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1273
    Product Catalog Name:
    Anti-Mitochondria Antibody, surface of intact mitochondria, clone 113-1
  • Acylation-stimulating protein/C5L2-neutralizing antibodies alter triglyceride metabolism in vitro and in vivo. 17711993

    Acylation-stimulating protein (ASP), a lipogenic hormone, stimulates triglyceride (TG) synthesis and glucose transport upon activation of C5L2, a G protein-coupled receptor. ASP-deficient mice have reduced adipose tissue mass due to increased energy expenditure despite increased food intake. The objective of this study was to evaluate the blocking of ASP-C5L2 interaction via neutralizing antibodies (anti-ASP and anti-C5L2-L1 against C5L2 extracellular loop 1). In vitro, anti-ASP and anti-C5L2-L1 blocked ASP binding to C5L2 and efficiently inhibited ASP stimulation of TG synthesis and glucose transport. In vivo, neither anti-ASP nor anti-C5L2-L1 altered body weight, adipose tissue mass, food intake, or hormone levels (insulin, leptin, and adiponectin), but they did induce a significant delay in TG clearance [P < 0.0001, 2-way repeated-measures (RM) ANOVA] and NEFA clearance (P < 0.0001, 2-way RM ANOVA) after a fat load. After treatment with either anti-ASP or anti-C5L2-L1 antibody there was no change in adipose tissue AMPK activity, but neutralizing antibodies decreased perirenal TG mass (-38.4% anti-ASP, -18.8% anti-C5L2, P < 0.01-0.001) and perirenal LPL activity (-75.6% anti-ASP, -72.5% anti-C5L2, P < 0.05). In liver, anti-C5L2-L1 decreased TG mass (-42.8%, P < 0.05), whereas anti-ASP increased AMPK activity (+34.6%, P < 0.001). In the muscle, anti-C5L2-L1 significantly increased TG mass (+128.0%, P < 0.05), LPL activity (+226.1%, P < 0.001), and AMPK activity (+71.1%, P < 0.01). In addition, anti-ASP increased LPL activity (+164.4, P < 0.05) and AMPK activity (+53.9%, P < 0.05) in muscle. ASP/C5L2-neutralizing antibodies effectively block ASP-C5L2 interaction, altering lipid distribution and energy utilization.
    Document Type:
    Reference
    Product Catalog Number:
    ABS1020
    Product Catalog Name:
    Anti-Acylation Stimulating Protein Antibody
  • GATA-1 and Oct-1 are required for expression of the human alpha-hemoglobin-stabilizing protein gene. 16186125

    Alpha-hemoglobin-stabilizing protein (AHSP) is an erythroid protein that binds and stabilizes alpha-hemoglobin during normal erythropoiesis and in pathological states of alpha-hemoglobin excess. AHSP has been proposed as a candidate gene in some Heinz body hemolytic anemias and as a modifier gene in the beta-thalassemia syndromes. To gain additional insight into the molecular mechanisms controlling the erythroid-specific expression of the AHSP gene and provide the necessary tools for further genetic studies of these disorders, we have initiated identification and characterization of the regulatory elements controlling the human AHSP gene. We mapped the 5'-end of the AHSP erythroid cDNA and cloned the 5'-flanking genomic DNA containing the putative AHSP gene promoter. In vitro studies using transfection of promoter/reporter plasmids in human tissue culture cell lines, DNase I footprinting analyses and gel mobility shift assays, identified an AHSP gene erythroid promoter with functionally important binding sites for GATA-1- and Oct-1-related proteins. In transgenic mice, a reporter gene directed by a minimal human AHSP promoter was expressed in bone marrow, spleen, and reticulocytes, but not in nonerythroid tissues. In vivo studies using chromatin immunoprecipitation assays demonstrated hyperacetylation of the promoter region and occupancy by GATA-1. The AHSP promoter is an excellent candidate region for mutations associated with decreased AHSP gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple