Millipore Sigma Vibrant Logo
 

cornea


173 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (153)
  • (4)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Dose-dependent immunohistochemical changes in rat cornea and retina after oral methylphenidate administration. 19007354

    Methylphenidate hydrochloride (MPH), more commonly known as Ritalin, is a piperidine derivative and is the drug most often used to treat attention deficit/hyperactivity disorder, one of the most common behavioural disorders of children and young adults. The aim of this study was to investigate dose-dependent immunohistochemical Dopamine 2 receptor (D2) expression and apoptosis in the rat cornea and cornea. In this study, 27 female pre-pubertal Wistar albino rats, divided into three different dose groups (5, 10 and 20 mg/kg) and their control groups, were used. They were treated orally with methylphenidate dissolved in saline solution for 5 days per week during 3 months. At the end of the third month, after perfusion fixation, eye tissue was removed. Paraffin sections were collected for immunohistochemical and terminal deoxynucleotidyl-transferase-mediated dUTP-biotin nick end labelling assay studies. In our study, we observed that the cornea D2 receptor reactivity showed a dose-related increase after MPH treatment, especially in basal cells of the epithelium and a dose-dependent decrease in the retinal ganglion cell which was statistically meaningful. Analysis of the cornea thickness results showed no meaningful difference between groups. Apoptotic cell number showed a meaningful increase in the high dose treated group compared to the other groups of the study. The data suggest that Ritalin has degenerative effect on the important functional part of the eye, such as cornea and retina and its activating dopaminergic mechanism via similar neuronal paths, functionally and structurally, to induce morphological changes. As a result, we believe that this morphological changes negatively effecting functional organization of the affected cornea and retina.
    Document Type:
    Reference
    Product Catalog Number:
    S7101
    Product Catalog Name:
    ApopTag® Plus Peroxidase In Situ Apoptosis Kit
  • A role for smoothened during murine lens and cornea development. 25268479

    Various studies suggest that Hedgehog (Hh) signalling plays roles in human and zebrafish ocular development. Recent studies (Kerr et al., Invest Ophthalmol Vis Sci. 2012; 53, 3316-30) showed that conditionally activating Hh signals promotes murine lens epithelial cell proliferation and disrupts fibre differentiation. In this study we examined the expression of the Hh pathway and the requirement for the Smoothened gene in murine lens development. Expression of Hh pathway components in developing lens was examined by RT-PCR, immunofluorescence and in situ hybridisation. The requirement of Smo in lens development was determined by conditional loss-of-function mutations, using LeCre and MLR10 Cre transgenic mice. The phenotype of mutant mice was examined by immunofluorescence for various markers of cell cycle, lens and cornea differentiation. Hh pathway components (Ptch1, Smo, Gli2, Gli3) were detected in lens epithelium from E12.5. Gli2 was particularly localised to mitotic nuclei and, at E13.5, Gli3 exhibited a shift from cytosol to nucleus, suggesting distinct roles for these transcription factors. Conditional deletion of Smo, from ∼E12.5 (MLR10 Cre) did not affect ocular development, whereas deletion from ∼E9.5 (LeCre) resulted in lens and corneal defects from E14.5. Mutant lenses were smaller and showed normal expression of p57Kip2, c-Maf, E-cadherin and Pax6, reduced expression of FoxE3 and Ptch1 and decreased nuclear Hes1. There was normal G1-S phase but decreased G2-M phase transition at E16.5 and epithelial cell death from E14.5-E16.5. Mutant corneas were thicker due to aberrant migration of Nrp2+ cells from the extraocular mesenchyme, resulting in delayed corneal endothelial but normal epithelial differentiation. These results indicate the Hh pathway is required during a discrete period (E9.5-E12.5) in lens development to regulate lens epithelial cell proliferation, survival and FoxE3 expression. Defective corneal development occurs secondary to defects in lens and appears to be due to defective migration of peri-ocular Nrp2+ neural crest/mesenchymal cells.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Potentiation of femtosecond laser intratissue refractive index shaping (IRIS) in the living cornea with sodium fluorescein. 19815735

    PURPOSE: To assess the effectiveness of intratissue refractive index shaping (IRIS) in living corneas and test the hypothesis that it can be enhanced by increasing the two-photon absorption (TPA) of the tissue. METHODS: Three corneas were removed from adult cats and cut into six pieces, which were placed in preservative (Optisol-GS; Bausch & Lomb, Inc., Irvine, CA) containing 0%, 0.25%, 1%, 1.5%, or 2.5% sodium fluorescein (Na-Fl). An 800-nm Ti:Sapphire femtosecond laser with a 100-fs pulse duration and 80-MHz repetition rate was used to perform IRIS in each piece, creating several refractive index (RI) modification lines at different speeds (between 0.1 and 5 mm/s). The lines were 1 mum wide, 10 microm apart, and approximately 150 microm below the tissue surface. The RI change of each grating was measured using calibrated, differential interference contrast microscopy. TUNEL staining was performed to assess whether IRIS or Na-Fl doping causes cell death. RESULTS: Scanning at 0.1 mm/s changed the RI of undoped, living corneas by 0.005. In doped corneas, RI changes between 0.01 and 0.02 were reliably achieved with higher scanning speeds. The magnitude of RI changes attained was directly proportional to Na-Fl doping concentration and inversely proportional to the scanning speed used to create the gratings. CONCLUSIONS: IRIS can be efficiently performed in living corneal tissue. Increasing the TPA of the tissue with Na-Fl increased both the scanning speeds and the magnitude of RI changes in a dose-dependent manner. Ongoing studies are exploring the use of IRIS to alter the optical properties of corneal tissue in situ, over an extended period.
    Document Type:
    Reference
    Product Catalog Number:
    S7165
    Product Catalog Name:
    ApopTag® Red In Situ Apoptosis Detection Kit
  • Klf4 regulates the expression of Slurp1, which functions as an immunomodulatory peptide in the mouse cornea. 23139280

    The secreted Ly6/uPAR-related protein-1 (Slurp1), associated with the hyperkeratotic disorder mal de Meleda, is abundantly expressed in corneas. Here, we examine its corneal expression and functions.Gene expression was quantified by quantitative PCR (qPCR), immunoblots, and immunofluorescent staining. Effect of Kruppel-like factor 4 (Klf4) on Slurp1 promoter was evaluated by chromatin immunoprecipitation (ChIP) and transient transfections. Adenoviral vectors were used to express Slurp1 in corneas. Leukocytic infiltration in bacterial lipopolysaccharide (LPS)-, herpes simplex virus type 1 (HSV-1)-, or adenovirus (serotype 5)-treated mouse corneas was characterized by flow cytometry.Corneal expression of Slurp1 increased sharply upon mouse eyelid opening, concurrent with the elevated expression of Klf4. Slurp1 was significantly decreased in Klf4 conditional null (Klf4CN) corneas that displayed elevated expression of cytokines and cytokine receptors, as well as neutrophil influx consistent with a proinflammatory environment. In additional models of corneal inflammation, Slurp1 expression was abrogated within 24 hours of LPS injection or HSV-1 or adenoviral infection, accompanied by a predominantly neutrophilic infiltrate. Neutrophilic infiltration was enhanced in HSV-1-infected Klf4CN corneas lacking Slurp1. SLURP1 promoter activity was stimulated by KLF4, suppressed by IL-4, IL-13, and TNFα, and unperturbed by IFN-γ. Slurp1 downregulation and neutrophil influx were comparable in HSV-1-infected wild-type (WT) and Ifng-/- mouse corneas. Mouse corneas infected with Slurp1-expressing adenoviral vectors displayed reduced signs of inflammation and restricted neutrophilic infiltration compared with those infected with control vectors.Klf4 regulates the expression of Slurp1, a key immunomodulatory peptide that is abundantly expressed in healthy corneas and is downregulated in proinflammatory conditions.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Corneal goblet cells and their niche: implications for corneal stem cell deficiency. 22821715

    Goblet cells are terminally differentiated cells secreting mucins and antibacterial peptides that play an important role in maintaining the health of the cornea. In corneal stem cell deficiency, the progenitor cells giving rise to goblet cells on the cornea are presumed to arise from differentiation of cells that migrate onto the cornea from the neighboring conjunctiva. This occurs in response to the inability of corneal epithelial progenitor cells at the limbus to maintain an intact corneal epithelium. This study characterizes clusters of cells we refer to as compound niches at the limbal:corneal border in the unwounded mouse. Compound niches are identified by high expression of simple epithelial keratin 8 (K8) and 19 (K19). They contain variable numbers of cells in one of several differentiation states: slow-cycling corneal progenitor cells, proliferating cells, nonproliferating cells, and postmitotic differentiated K12+Muc5ac+ goblet cells. Expression of K12 differentiates these goblet cells from those in the conjunctival epithelium and suggests that corneal epithelial progenitor cells give rise to both corneal epithelial and goblet cells. After wounds that remove corneal epithelial cells near the limbus, compound niches migrate from the limbal:corneal border onto the cornea where K8+ cells proliferate and goblet cells increase in number. By contrast, no migration of goblet cells from the bulbar conjunctiva onto the cornea is observed. This study is the first description of compound niches and corneal goblet cells and demonstration of a role for these cells in the pathology typically associated with corneal stem cell deficiency.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501R
    Product Catalog Name:
    Anti-Actin Antibody,clone C4
  • Corneal wound healing and nerve morphology after excimer laser in situ keratomileusis in human eyes. 8895121

    BACKGROUND: Our aim was to describe wound healing and nerve regeneration in the human cornea after excimer laser in situ keratomileusis. METHODS: Excimer laser in situ keratomileusis was done in three human eyes 8 days, 54 days, and 4 months prior to enucleation. Acetylcholinesterase reaction was used to histochemically demonstrate the corneal nerves. Immunohistochemical methods were used to demonstrate the following wound healing proteins: cellular fibronectin, tenascin, transforming growth factor-beta 1, and alpha-smooth muscle actin. RESULTS: All corneas healed without complication. No epithelial hyperplasia appeared and the Bowman's layer was smooth and acellular. An epithelial plug extending up to 100-300 microns under the flap margins was seen in all specimens. Regenerative nerve fiber bundles emerging from sharply cut anterior stromal nerves were observed, but the deeper nerves were normal. Restricted expression of fibronectin and tenascin was found at the wound area. All corneal cell types were positive for transforming growth factor-beta 1 antibody. Cells lining the limbal vessels were positive for alpha-smooth muscle actin antibody whereas the corneal cells were negative. CONCLUSIONS: The nerve morphology showed only a few abnormalities, especially in deep stromal nerves. Epithelial plugs at the flap margins may maintain a delayed wound healing process for several months but otherwise the process remained active for a relatively short time.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1940
    Product Catalog Name:
    Anti-Fibronectin Antibody, cellular, clone DH1
  • Corneal myofibroblast generation from bone marrow-derived cells. 20417632

    The purpose of this study was to determine whether bone marrow-derived cells can differentiate into myofibroblasts, as defined by alpha-smooth muscle actin (SMA) expression, that arise in the corneal stroma after irregular phototherapeutic keratectomy and whose presence within the cornea is associated with corneal stromal haze. C57BL/6J-GFP chimeric mice were generated through bone marrow transplantation from donor mice that expressed enhanced green fluorescent protein (GFP) in a high proportion of their bone marrow-derived cells. Twenty-four GFP chimeric mice underwent haze-generating corneal epithelial scrape followed by irregular phototherapeutic keratectomy (PTK) with an excimer laser in one eye. Mice were euthanized at 2 weeks or 4 weeks after PTK and the treated and control contralateral eyes were removed and cryo-preserved for sectioning for immunocytochemistry. Double immunocytochemistry for GFP and myofibroblast marker alpha-smooth muscle actin (SMA) were performed and the number of SMA+GFP+, SMA+GFP-, SMA-GFP+ and SMA-GFP- cells, as well as the number of DAPI+ cell nuclei, per 400x field of stroma was determined in the central, mid-peripheral and peri-limbal cornea. In this mouse model, there were no SMA+ cells and only a few GFP+ cells detected in unwounded control corneas. No SMA+ cells were detected in the stroma at two weeks after irregular PTK, even though there were numerous GFP+ cells present. At 4 weeks after irregular PTK, all corneas developed mild to moderately severe corneal haze. In each of the three regions of the corneas examined, there were on average more than 9x more SMA+GFP+ than SMA+GFP- myofibroblasts. This difference was significant (p less than 0.01). There were significantly more (p less than 0.01) SMA-GFP+ cells, which likely include inflammatory cells, than SMA+GFP+ or SMA+GFP- cells, although SMA-GFP- cells represent the largest population of cells in the corneas. In this mouse model, the majority of myofibroblasts developed from bone marrow-derived cells. It is possible that all myofibroblasts in these animals developed from bone marrow-derived cells since mouse chimeras produced using this method had only 60-95% of bone marrow-derived cells that were GFP+ and it is not possible to achieve 100% chimerization. This model, therefore, cannot exclude the possibility of myofibroblasts also developed from keratocytes and/or corneal fibroblasts.
    Document Type:
    Reference
    Product Catalog Number:
    AB3080
    Product Catalog Name:
    Anti-Green Fluorescent Protein Antibody
  • Lateral growth limitation of corneal fibrils and their lamellar stacking depend on covalent collagen cross-linking by transglutaminase-2 and lysyl oxidases, respectively. 24265319

    Corneal stroma contains an extracellular matrix of orthogonal lamellae formed by parallel and equidistant fibrils with a homogeneous diameter of ~35 nm. This is indispensable for corneal transparency and mechanical functions. However, the mechanisms controlling corneal fibrillogenesis are incompletely understood and the conditions required for lamellar stacking are essentially unknown. Under appropriate conditions, chick embryo corneal fibroblasts can produce an extracellular matrix in vitro resembling primary corneal stroma during embryonic development. Among other requirements, cross-links between fibrillar collagens, introduced by tissue transglutaminase-2, are necessary for the self-assembly of uniform, small diameter fibrils but not their lamellar stacking. By contrast, the subsequent lamellar organization into plywood-like stacks depends on lysyl aldehyde-derived cross-links introduced by lysyl oxidase activity, which, in turn, only weakly influences fibril diameters. These cross-links are introduced at early stages of fibrillogenesis. The enzymes are likely to be important for a correct matrix deposition also during repair of the cornea.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Activated Ras alters lens and corneal development through induction of distinct downstream targets. 20105280

    Mammalian Ras genes regulate diverse cellular processes including proliferation and differentiation and are frequently mutated in human cancers. Tumor development in response to Ras activation varies between different tissues and the molecular basis for these variations are poorly understood. The murine lens and cornea have a common embryonic origin and arise from adjacent regions of the surface ectoderm. Activation of the fibroblast growth factor (FGF) signaling pathway induces the corneal epithelial cells to proliferate and the lens epithelial cells to exit the cell cycle. The molecular mechanisms that regulate the differential responses of these two related tissues have not been defined. We have generated transgenic mice that express a constitutively active version of human H-Ras in their lenses and corneas.Ras transgenic lenses and corneal epithelial cells showed increased proliferation with concomitant increases in cyclin D1 and D2 expression. This initial increase in proliferation is sustained in the cornea but not in the lens epithelial cells. Coincidentally, cdk inhibitors p27Kip1 and p57Kip2 were upregulated in the Ras transgenic lenses but not in the corneas. Phospho-Erk1 and Erk2 levels were elevated in the lens but not in the cornea and Spry 1 and Spry 2, negative regulators of Ras-Raf-Erk signaling, were upregulated more in the corneal than in the lens epithelial cells. Both lens and corneal differentiation programs were sensitive to Ras activation. Ras transgenic embryos showed a distinctive alteration in the architecture of the lens pit. Ras activation, though sufficient for upregulation of Prox1, a transcription factor critical for cell cycle exit and initiation of fiber differentiation, is not sufficient for induction of terminal fiber differentiation. Expression of Keratin 12, a marker of corneal epithelial differentiation, was reduced in the Ras transgenic corneas.Collectively, these results suggest that Ras activation a) induces distinct sets of downstream targets in the lens and cornea resulting in distinct cellular responses and b) is sufficient for initiation but not completion of lens fiber differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    AB5475
    Product Catalog Name:
    Anti-Prox 1 Antibody