Millipore Sigma Vibrant Logo
 

mouse+anti+gapdh


20 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Differing in vitro survival dependency of mouse and rat NG2+ oligodendroglial progenitor cells. 19908280

    NG2 chondroitin sulfate proteoglycan is a surface marker of oligodendroglial progenitor cells (OPCs) in various species. In contrast to well-studied rat OPCs, however, we found that purified mouse NG2 surface positive cells (NG2(+) cells) require additional activation of cyclic AMP (cAMP) signaling for survival in a medium containing 30% B104 neuroblastoma conditioned medium supplemented with fibroblast growth factor-2 (B104CM+FGF2), whereas B104CM+FGF2 alone is sufficient for survival and selective proliferation of rat OPCs. After induction of in vitro differentiation, more than 90% of mouse NG2(+) cells became O4-positive, and a majority expressed myelin basic protein by 5 day of differentiation, which confirmed the identity of isolated mouse NG2(+) cells as OPCs. In comparison to rat OPCs, mouse OPCs in B104CM+FGF2 were less motile, and demonstrated lower basal phosphorylation levels of ERK1/2 and cAMP response element-binding protein (CREB) and a higher incidence of apoptosis mediated by the intrinsic pathway. Transient up-regulation of cAMP-CREB signaling partially inhibited apoptosis of mouse OPCs independently of the ERK pathway. This study demonstrates a difference in trophic requirements between mouse and rat OPCs, with an essential role for cAMP signaling to preserve viability of mouse OPCs. (c) 2009 Wiley-Liss, Inc.
    Document Type:
    Reference
    Product Catalog Number:
    AB5320
    Product Catalog Name:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • PP56 improves energy homeostasis in a mouse model of pancreatic cancer. 20422342

    In this study, we investigated whether the anti-inflammatory drug PP56 (alpha-trinositol) may improve cancer-induced metabolic disorders. We implanted human MiaPaCa2 pancreatic cancer cells in the pancreas of 14 athymic mice for 12 weeks, using six intact littermates as normal controls. During the 12 weeks, seven tumor-cell recipients were treated with PP56 by daily injection (PPT mice). The tumor-cell recipients that were otherwise untreated were used as tumor controls (TC mice). Impaired glucose tolerance and decreased body weight gain were seen in TC but not PPT mice. When an enzyme for fatty acid beta-oxidation namely medium-chain acyl-CoA dehydrogenase (MCAD) was determined in tumor grafts; tumors from PPT mice showed more MCAD than those from TC mice. This suggests that PP56 stimulated fatty acid beta-oxidation in MiaPaCa2 cells in vivo. In keeping with this notion, PPT mice had decreased plasma free fatty acids. In vitro, we demonstrated that MiaPaCa2 cells consumed more fatty acids in the presence of PP56. In another experiment, we infused PP56 or vehicle in normal mice and found that PP56 decreased circulating glucose in the animals. We also showed that PP56 increased glucose transport in L6 skeletal muscle cells in vitro. In conclusion, PP56 increases the turnover of circulating nutrients such as glucose and helps maintain energy homeostasis in mice with pancreatic cancer.
    Document Type:
    Reference
    Product Catalog Number:
    AP106P
    Product Catalog Name:
    Rabbit Anti-Goat IgG Antibody, HRP conjugate
  • Functional and molecular evidence of myelin- and neuroprotection by thyroid hormone administration in experimental allergic encephalomyelitis. 22007951

    Recent data in mouse and rat demyelination models indicate that administration of thyroid hormone (TH) has a positive effect on the demyelination/remyelination balance. As axonal pathology has been recognized as an early neuropathological event in multiple sclerosis, and remyelination is considered a pre-eminent neuroprotective strategy, in this study we investigated whether TH administration improves nerve impulse propagation and protects axons.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Contrasting behavior of the p18INK4c and p16INK4a tumor suppressors in both replicative and oncogene-induced senescence. 22080569

    The cyclin-dependent kinase (CDK) inhibitors, p18(INK4c) and p16(INK4a), both have the credentials of tumor suppressors in human cancers and mouse models. For p16(INK4a), the underlying rationale is its role in senescence, but the selective force for inactivation of p18(INK4c) in incipient cancer cells is less clear. Here, we show that in human fibroblasts undergoing replicative or oncogene-induced senescence, there is a marked decline in the levels of p18(INK4c) protein and RNA, which mirrors the accumulation of p16(INK4a). Downregulation of INK4c is not dependent on p16(INK4a), and RAS can promote the loss of INK4c without cell-cycle arrest. Downregulation of p18(INK4c) correlates with reduced expression of menin and E2F1 but is unaffected by acute cell-cycle arrest or inactivation of the retinoblastoma protein (pRb). Collectively, our data question the idea that p18(INK4c) acts as a backup for loss of p16(INK4a) and suggest that the apparent activation of p18(INK4c) in some settings represents delayed senescence rather than increased expression. We propose that the contrasting behavior of the two very similar INK4 proteins could reflect their respective roles in senescence versus differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The stimulation of adipose-derived stem cell differentiation and mineralization by ordered rod-like fluorapatite coatings. 22483243

    In this study, the effect of ordered rod-like FA coatings of metal discs on adipose-derived stem cell (ASC)'s growth, differentiation and mineralization was studied in vitro; and their mineral inductive effects in vivo. After 3 and 7 days, the cell number on the metal surfaces was significantly higher than those on the ordered and disordered FA surfaces. However, after 4 weeks much greater amounts of mineral formation was induced on the two FA surfaces with and even without osteogenesis induction. The osteogenic profiles showed the up regulation of a set of pro-osteogenic transcripts and bone mineralization phenotypic markers when the ASCs were grown on FA surfaces compared to metal surfaces at 7 and 21 days. In addition to BMP and TGFβ signaling pathways, EGF and FGF pathways also appeared to be involved in ASC differentiation and mineralization. In vivo studies showed accelerated and enhanced mineralized tissue formation integrated within ordered FA coatings. After 5 weeks, over 80% of the ordered FA coating was integrated with a mineralized tissue layer covering the implants. Both the intrinsic properties of the FA crystals and the topography of the FA coating appeared to dominate the cell differentiation and mineralization process.
    Document Type:
    Reference
    Product Catalog Number:
    ECM815
    Product Catalog Name:
    Osteogenesis Quantitation Kit
  • Presenilin 1 modifies lipid raft composition of neuronal membranes. 19292975

    Protein-lipid interactions in the nervous system may provide insight into the causes of neurological disorders. In this study, we elucidated if expression of human presenilin 1 (PS1) in a mouse model changes the physico-chemical properties of brain membranes. PS1 is a multifunctional transmembrane protein and part of the gamma-secretase complex. This complex is critical for the production of the Alzheimer related amyloid beta peptide. Brain membranes isolated from mice expressing a human wild-type PS1 transgene are less fluid and contain higher cholesterol and sphingomyelin levels. Moreover, our data reveal significant changes in membrane micro-domains and indicate that PS1 induces the formation of lipid rafts.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1563
    Product Catalog Name:
    Anti-Presenilin-1 Antibody, NT, clone hPS1-NT
  • Aldosterone and vasopressin affect {alpha}- and {gamma}-ENaC mRNA translation. 20453031

    Vasopressin and aldosterone play key roles in the fine adjustment of sodium and water re-absorption in the nephron. The molecular target of this regulation is the epithelial sodium channel (ENaC) consisting of α-, β- and γ-subunits. We investigated mRNA-specific post-transcriptional mechanisms in hormone-dependent expression of ENaC subunits in mouse kidney cortical collecting duct cells. Transcription experiments and polysome gradient analysis demonstrate that both hormones act on transcription and translation. RNA-binding proteins (RBPs) and mRNA sequence motifs involved in translational control of γ-ENaC synthesis were studied. γ-ENaC-mRNA 3'-UTR contains an AU-rich element (ARE), which was shown by RNA affinity chromatography to interact with AU-rich element binding proteins (ARE-BP) like HuR, AUF1 and TTP. Some RBPs co-localized with γ-ENaC mRNA in polysomes in a hormone-dependent manner. Reporter gene co-expression experiments with luciferase γ-ENaC 3'-UTR constructs and ARE-BP expression plasmids demonstrate the importance of RNA-protein interaction for the up-regulation of γ-ENaC synthesis. We document that aldosterone and the V(2) receptor agonist dDAVP act on synthesis of α- and γ-ENaC subunits mediated by RBPs as effectors of translation but not by mRNA stabilization. Immunoprecipitation and UV-crosslinking analysis of γ-ENaC-mRNA/HuR complexes document the significance of γ-ENaC-mRNA-3'-UTR/HuR interaction for hormonal control of ENaC synthesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation. 22775996

    Transient knock-down of the gap junction protein Cx43 by antisense and siRNA, or gap junction block with mimetic peptides, have been shown to enhance epidermal wound healing. However, patients with oculodentodigital dysplasia (ODDD) express mutant Cx43 that leads to a chronic reduction in gap junctional intercellular communication. To determine whether mutant Cx43 in keratinocytes would impact upon the wound healing process, we localized Cx43 in human and mouse skin tissue expressing mutant Cx43 and assessed the ability of primary keratinocytes derived from a mouse model of ODDD to proliferate, migrate and differentiate. In the epidermis from an ODDD patient and in the epidermis of mice expressing the G60S mutant or in keratinocytes obtained from mutant mice, Cx43 was frequently found within intracellular compartments and rarely localized to punctate sites of cell-cell apposition. Primary keratinocytes derived from G60S mutant mice proliferated faster but migrated similarly to keratinocytes derived from wild-type control mice. Keratinocytes derived from mutant mice expressed abundant Cx43 and higher levels of involucrin and loricrin under low calcium conditions. However, after calcium-induced differentiation, similar levels of Cx43, involucrin and loricrin were observed. Thus, we conclude that during wound healing, mutant Cx43 may enhance keratinocyte proliferation and promote early differentiation of keratinocytes.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • An aberrant cerebellar development in mice lacking matrix metalloproteinase-3. 22108898

    Cell-cell and cell-matrix interactions are necessary for neuronal patterning and brain wiring during development. Matrix metalloproteinases (MMPs) are proteolytic enzymes capable of remodelling the pericellular environment and regulating signaling pathways through cleavage of a large degradome. MMPs have been suggested to affect cerebellar development, but the specific role of different MMPs in cerebellar morphogenesis remains unclear. Here, we report a role for MMP-3 in the histogenesis of the mouse cerebellar cortex. MMP-3 expression peaks during the second week of postnatal cerebellar development and is most prominently observed in Purkinje cells (PCs). In MMP-3 deficient (MMP-3(-/-)) mice, a protracted granule cell (GC) tangential migration and a delayed GC radial migration results in a thicker and persistent external granular layer, a retarded arrival of GCs in the inner granular layer, and a delayed GABAergic interneuron migration. Importantly, these neuronal migration anomalies, as well as the consequent disturbed synaptogenesis on PCs, seem to be caused by an abnormal PC dendritogenesis, which results in reduced PC dendritic trees in the adult cerebellum. Of note, these developmental and adult cerebellar defects might contribute to the aberrant motor phenotype observed in MMP-3(-/-) mice and suggest an involvement of MMP-3 in mouse cerebellar development.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • MeCP2 deficiency in the brain decreases BDNF levels by REST/CoREST-mediated repression and increases TRKB production. 18075316

    Disruptions in the expression of the BDNF gene that encodes a neurotrophic factor involved in neuronal survival, differentiation and synaptic plasticity has been proposed to contribute to the molecular pathogenesis of Rett syndrome. Rett syndrome (RTT) is a neurodevelopmental disorder, caused by mutations in the X-linked methyl CpG binding protein 2 gene (MeCP2). MeCP2 deficiency in the brain has been shown to decrease overall expression of BDNF in spite of an observed increase in the activity of promoter III that appears to be controlled directly by MeCP2. Therefore, how MeCP2 deficiency causes an overall downregulation of BDNF expression was an enigma. Here we report that MeCP2 deficiency in human and mouse brain causes an increase in expression of two neuronal gene transcriptional repressors REST (RE1 silencing transcription factor), and CoREST. MeCP2 binds to and is involved in repression of Rest and CoRest promoters despite their unmethylated state. MeCP2 depletion is associated with a change in the histone modification profile to a more active conformation. The elevated levels of REST and CoREST in the brain of RTT patients and MeCP2 deficient mice result in downregulation of BDNF, apparently by their binding to the RE1 (element) located between the first two promoters of the BDNF gene. Interestingly, the NTRK2 gene that encodes the BDNF receptor, TRKB, was overexpressed in MeCP2 deficient human and mouse brains either directly or as an attempt to compensate for BDNF deficiency.
    Document Type:
    Reference
    Product Catalog Number:
    07-579
    Product Catalog Name:
    Anti-REST Antibody