Recording, labeling, and transfection of single neurons in deep brain structures. Dempsey, B; Turner, AJ; Le, S; Sun, QJ; Bou Farah, L; Allen, AM; Goodchild, AK; McMullan, S Physiological reports
3
2015
Show Abstract
Genetic tools that permit functional or connectomic analysis of neuronal circuits are rapidly transforming neuroscience. The key to deployment of such tools is selective transfection of target neurons, but to date this has largely been achieved using transgenic animals or viral vectors that transduce subpopulations of cells chosen according to anatomical rather than functional criteria. Here, we combine single-cell transfection with conventional electrophysiological recording techniques, resulting in three novel protocols that can be used for reliable delivery of conventional dyes or genetic material in vitro and in vivo. We report that techniques based on single cell electroporation yield reproducible transfection in vitro, and offer a simple, rapid and reliable alternative to established dye-labeling techniques in vivo, but are incompatible with targeted transfection in deep brain structures. In contrast, we show that intracellular electrophoresis of plasmid DNA transfects brainstem neurons recorded up to 9 mm deep in the anesthetized rat. The protocols presented here require minimal, if any, modification to recording hardware, take seconds to deploy, and yield high recovery rates in vitro (dye labeling: 89%, plasmid transfection: 49%) and in vivo (dye labeling: 66%, plasmid transfection: 27%). They offer improved simplicity compared to the juxtacellular labeling technique and for the first time offer genetic manipulation of functionally characterized neurons in previously inaccessible brain regions. | | | 25602013
 |
Retinal output changes qualitatively with every change in ambient illuminance. Tikidji-Hamburyan, A; Reinhard, K; Seitter, H; Hovhannisyan, A; Procyk, CA; Allen, AE; Schenk, M; Lucas, RJ; Münch, TA Nature neuroscience
18
66-74
2015
Show Abstract
The collective activity pattern of retinal ganglion cells, the retinal code, underlies higher visual processing. How does the ambient illuminance of the visual scene influence this retinal output? We recorded from isolated mouse and pig retina and from mouse dorsal lateral geniculate nucleus in vivo at up to seven ambient light levels covering the scotopic to photopic regimes. Across each luminance transition, most ganglion cells exhibited qualitative response changes, whereas they maintained stable responses within each luminance. We commonly observed the appearance and disappearance of ON responses in OFF cells and vice versa. Such qualitative response changes occurred for a variety of stimuli, including full-field and localized contrast steps and naturalistic movies. Our results suggest that the retinal code is not fixed but varies with every change of ambient luminance. This finding raises questions about signal processing within the retina and has implications for visual processing in higher brain areas. | | | 25485757
 |
Chemical coding and chemosensory properties of cholinergic brush cells in the mouse gastrointestinal and biliary tract. Schütz, B; Jurastow, I; Bader, S; Ringer, C; von Engelhardt, J; Chubanov, V; Gudermann, T; Diener, M; Kummer, W; Krasteva-Christ, G; Weihe, E Frontiers in physiology
6
87
2015
Show Abstract
The mouse gastro-intestinal and biliary tract mucosal epithelia harbor choline acetyltransferase (ChAT)-positive brush cells with taste cell-like traits. With the aid of two transgenic mouse lines that express green fluorescent protein (EGFP) under the control of the ChAT promoter (EGFP (ChAT) ) and by using in situ hybridization and immunohistochemistry we found that EGFP (ChAT) cells were clustered in the epithelium lining the gastric groove. EGFP (ChAT) cells were numerous in the gall bladder and bile duct, and found scattered as solitary cells along the small and large intestine. While all EGFP (ChAT) cells were also ChAT-positive, expression of the high-affinity choline transporter (ChT1) was never detected. Except for the proximal colon, EGFP (ChAT) cells also lacked detectable expression of the vesicular acetylcholine transporter (VAChT). EGFP (ChAT) cells were found to be separate from enteroendocrine cells, however they were all immunoreactive for cytokeratin 18 (CK18), transient receptor potential melastatin-like subtype 5 channel (TRPM5), and for cyclooxygenases 1 (COX1) and 2 (COX2). The ex vivo stimulation of colonic EGFP (ChAT) cells with the bitter substance denatonium resulted in a strong increase in intracellular calcium, while in other epithelial cells such an increase was significantly weaker and also timely delayed. Subsequent stimulation with cycloheximide was ineffective in both cell populations. Given their chemical coding and chemosensory properties, EGFP (ChAT) brush cells thus may have integrative functions and participate in induction of protective reflexes and inflammatory events by utilizing ACh and prostaglandins for paracrine signaling. | | | 25852573
 |
Neuron-to-neuron α-synuclein propagation in vivo is independent of neuronal injury. Ulusoy, A; Musgrove, RE; Rusconi, R; Klinkenberg, M; Helwig, M; Schneider, A; Di Monte, DA Acta neuropathologica communications
3
13
2015
Show Abstract
Interneuronal propagation of α-synuclein has been demonstrated in a variety of experimental models and may be involved in disease progression during the course of human synucleinopathies. The aim of this study was to assess the role that neuronal injury or, vice versa, cell integrity could have in facilitating interneuronal α-synuclein transfer and consequent protein spreading in an in vivo animal model.Viral vectors carrying the DNA for human α-synuclein were injected into the rat vagus nerve to trigger protein overexpression in the medulla oblongata and consequent spreading of human α-synuclein toward pons, midbrain and forebrain. Two vector preparations sharing the same viral construct were manufactured using identical procedures with the exception of methods for their purification. They were also injected at concentrations that induced comparable levels of α-synuclein transduction/overexpression in the medulla oblongata. α-Synuclein load was associated with damage (at 6 weeks post injection) and death (at 12 weeks) of medullary neurons after treatment with only one of the two vector preparations. Of note, neuronal injury and degeneration was accompanied by a substantial reduction of caudo-rostral propagation of human α-synuclein.Interneuronal α-synuclein transfer, which underlies protein spreading from the medulla oblongata to more rostral brain regions in this rat model, is not a mere consequence of passive release from damaged or dead neurons. Neuronal injury and degeneration did not exacerbate α-synuclein propagation. In fact, data suggest that cell-to-cell passage of α-synuclein may be particularly efficient between intact, relatively healthy neurons. | | | 25853980
 |
A combination Alzheimer's therapy targeting BACE1 and neprilysin in 5XFAD transgenic mice. Devi, L; Ohno, M Molecular brain
8
19
2015
Show Abstract
Accumulating evidence indicates that partial inhibition of β-site APP-cleaving enzyme 1 (BACE1), which initiates amyloid-β (Aβ) production, mitigates Alzheimer's disease (AD)-like pathologies and memory deficits in a battery of transgenic mouse models. However, our previous investigations suggest that therapeutic BACE1 suppression may be beneficial only if targeted on earlier stages of AD and encounter dramatic reductions in efficacy during disease progression. This study was designed to test the possibility that a combination approach, aimed at inhibiting BACE1 and boosting neprilysin (a major Aβ-degrading enzyme) activities, may be able to mechanistically overcome the limited efficacy of anti-Aβ therapy in advanced AD.After crossbreeding between BACE1 heterozygous knockout (BACE1(+/-)), neprilysin transgenic (NEP) and 5XFAD mice, we analyzed the resultant mice at 12 months of age when 5XFAD controls showed robust amyloid-β (Aβ) accumulation and elevation of BACE1 expression (~2 folds). Although haploinsufficiency lowered BACE1 expression by ~50% in concordance with reduction in gene copy number, profound β-amyloidosis, memory deficits and cholinergic neuron death were no longer rescued in BACE1(+/-) · 5XFAD mice concomitant with their persistently upregulated BACE1 (i.e., equivalent to wild-type control levels). Notably, neprilysin overexpression not only prevented Aβ accumulation but also suppressed the translation initiation factor eIF2α-associated elevation of BACE1 and lowered levels of the β-secretase-cleaved C-terminal fragment of APP (C99) in NEP · 5XFAD mice. Interestingly, these markers for β-amyloidogenesis in BACE1(+/-) · NEP · 5XFAD mice were further reduced to the levels reflecting a combination of single BACE1 allele ablation and the abolishment of translational BACE1 upregulation. However, since neprilysin overexpression was striking (~8-fold relative to wild-type controls), memory impairments, cholinergic neuronal loss and β-amyloidosis were similarly prevented in NEP · 5XFAD and BACE1(+/-) · NEP · 5XFAD mice.Our findings indicate that robust overexpression of neprilysin is sufficient to ameliorate AD-like phenotypes in aged 5XFAD mice. We also found that Aβ-degrading effects of overexpressed neprilysin can block deleterious BACE1-elevating mechanisms that accelerate Aβ production, warranting further study to test whether interventions moderately activating neprilysin may be useful for boosting the limited efficacy of therapeutic BACE1 inhibition in treating AD with established Aβ pathology. | | | 25884928
 |
Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. Abdi, A; Mallet, N; Mohamed, FY; Sharott, A; Dodson, PD; Nakamura, KC; Suri, S; Avery, SV; Larvin, JT; Garas, FN; Garas, SN; Vinciati, F; Morin, S; Bezard, E; Baufreton, J; Magill, PJ The Journal of neuroscience : the official journal of the Society for Neuroscience
35
6667-88
2015
Show Abstract
Studies in dopamine-depleted rats indicate that the external globus pallidus (GPe) contains two main types of GABAergic projection cell; so-called "prototypic" and "arkypallidal" neurons. Here, we used correlative anatomical and electrophysiological approaches in rats to determine whether and how this dichotomous organization applies to the dopamine-intact GPe. Prototypic neurons coexpressed the transcription factors Nkx2-1 and Lhx6, comprised approximately two-thirds of all GPe neurons, and were the major GPe cell type innervating the subthalamic nucleus (STN). In contrast, arkypallidal neurons expressed the transcription factor FoxP2, constituted just over one-fourth of GPe neurons, and innervated the striatum but not STN. In anesthetized dopamine-intact rats, molecularly identified prototypic neurons fired at relatively high rates and with high regularity, regardless of brain state (slow-wave activity or spontaneous activation). On average, arkypallidal neurons fired at lower rates and regularities than prototypic neurons, and the two cell types could be further distinguished by the temporal coupling of their firing to ongoing cortical oscillations. Complementing the activity differences observed in vivo, the autonomous firing of identified arkypallidal neurons in vitro was slower and more variable than that of prototypic neurons, which tallied with arkypallidal neurons displaying lower amplitudes of a "persistent" sodium current important for such pacemaking. Arkypallidal neurons also exhibited weaker driven and rebound firing compared with prototypic neurons. In conclusion, our data support the concept that a dichotomous functional organization, as actioned by arkypallidal and prototypic neurons with specialized molecular, structural, and physiological properties, is fundamental to the operations of the dopamine-intact GPe. | | | 25926446
 |
DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. Li, S; Sukeena, JM; Simmons, AB; Hansen, EJ; Nuhn, RE; Samuels, IS; Fuerst, PG The Journal of neuroscience : the official journal of the Society for Neuroscience
35
5640-54
2015
Show Abstract
In this study we develop and use a gain-of-function mouse allele of the Down syndrome cell adhesion molecule (Dscam) to complement loss-of-function models. We assay the role of Dscam in promoting cell death, spacing, and laminar targeting of neurons in the developing mouse retina. We find that ectopic or overexpression of Dscam is sufficient to drive cell death. Gain-of-function studies indicate that Dscam is not sufficient to increase spatial organization, prevent cell-to-cell pairing, or promote active avoidance in the mouse retina, despite the similarity of the Dscam loss-of-function phenotype in the mouse retina to phenotypes observed in Drosophila Dscam1 mutants. Both gain- and loss-of-function studies support a role for Dscam in targeting neurites; DSCAM is necessary for precise dendrite lamination, and is sufficient to retarget neurites of outer retinal cells after ectopic expression. We further demonstrate that DSCAM guides dendrite targeting in type 2 dopaminergic amacrine cells, by restricting the stratum in which exploring retinal dendrites stabilize, in a Dscam dosage-dependent manner. Based on these results we propose a single model to account for the numerous Dscam gain- and loss-of-function phenotypes reported in the mouse retina whereby DSCAM eliminates inappropriately placed cells and connections. | | | 25855178
 |
Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Hoch, RV; Clarke, JA; Rubenstein, JL Neural development
10
8
2015
Show Abstract
The rostral patterning center (RPC) secretes multiple fibroblast growth factors (Fgfs) essential for telencephalon growth and patterning. Fgf expression patterns suggest that they mark functionally distinct RPC subdomains. We generated Fgf8(CreER) and Fgf17(CreER) mice and used them to analyze the lineages of Fgf8- versus Fgf17-expressing RPC cells.Both lineages contributed to medial structures of the rostroventral telencephalon structures including the septum and medial prefrontral cortex. In addition, RPC-derived progenitors were observed in other regions of the early telencephalic neuroepithelium and generated neurons in the olfactory bulb, neocortex, and basal ganglia. Surprisingly, Fgf8(+) RPC progenitors generated the majority of basal ganglia cholinergic neurons. Compared to the Fgf8 lineage, the Fgf17 lineage was more restricted in its early dispersion and its contributions to the telencephalon. Mutant studies suggested that Fgf8 and Fgf17 restrict spread of RPC progenitor subpopulations.We identified the RPC as an important source of progenitors that contribute broadly to the telencephalon and found that two molecularly distinct progenitor subtypes in the RPC make different contributions to the developing forebrain. | | | 25889070
 |
Restoring the ON Switch in Blind Retinas: Opto-mGluR6, a Next-Generation, Cell-Tailored Optogenetic Tool. van Wyk, M; Pielecka-Fortuna, J; Löwel, S; Kleinlogel, S PLoS biology
13
e1002143
2015
Show Abstract
Photoreceptor degeneration is one of the most prevalent causes of blindness. Despite photoreceptor loss, the inner retina and central visual pathways remain intact over an extended time period, which has led to creative optogenetic approaches to restore light sensitivity in the surviving inner retina. The major drawbacks of all optogenetic tools recently developed and tested in mouse models are their low light sensitivity and lack of physiological compatibility. Here we introduce a next-generation optogenetic tool, Opto-mGluR6, designed for retinal ON-bipolar cells, which overcomes these limitations. We show that Opto-mGluR6, a chimeric protein consisting of the intracellular domains of the ON-bipolar cell-specific metabotropic glutamate receptor mGluR6 and the light-sensing domains of melanopsin, reliably recovers vision at the retinal, cortical, and behavioral levels under moderate daylight illumination. | Immunoblotting (Western) | | 25950461
 |
Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73. Jinks, RN; Puffenberger, EG; Baple, E; Harding, B; Crino, P; Fogo, AB; Wenger, O; Xin, B; Koehler, AE; McGlincy, MH; Provencher, MM; Smith, JD; Tran, L; Al Turki, S; Chioza, BA; Cross, H; Harlalka, GV; Hurles, ME; Maroofian, R; Heaps, AD; Morton, MC; Stempak, L; Hildebrandt, F; Sadowski, CE; Zaritsky, J; Campellone, K; Morton, DH; Wang, H; Crosby, A; Strauss, KA Brain : a journal of neurology
138
2173-90
2015
Show Abstract
We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. | | | 26070982
 |