Millipore Sigma Vibrant Logo
 

Transient Receptor Potential Channels


94 Results Advanced Search  
Showing
Products (0)
Documents (92)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (66)
  • (22)
  • (4)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Differential expression of canonical (classical) transient receptor potential channels in guinea pig enteric nervous system. 18925632

    The canonical transient receptor potential (TRPC) family of ion channels is implicated in many neuronal processes including calcium homeostasis, membrane excitability, synaptic transmission, and axon guidance. TRPC channels are postulated to be important in the functional neurobiology of the enteric nervous system (ENS); nevertheless, details for expression in the ENS are lacking. Reverse transcriptase-polymerase chain reaction, Western blotting, and immunohistochemistry were used to study the expression and localization of TRPC channels. We found mRNA transcripts, protein on Western blots, and immunoreactivity (IR) for TRPC1/3/4/6 expressed in the small intestinal ENS of adult guinea pigs. TRPC1/3/4/6-IR was localized to distinct subpopulations of enteric neurons and was differentially distributed between the myenteric and submucosal divisions of the ENS. TRPC1-IR was widely distributed and localized to neurons with cholinergic, calretinin, and nitrergic neuronal immunochemical codes in the myenteric plexus. It was localized to both cholinergic and noncholinergic secretomotor neurons in the submucosal plexus. TRPC3-IR was found only in the submucosal plexus and was expressed exclusively by neuropeptide Y-IR neurons. TRPC4/6-IR was expressed in only a small population of myenteric neurons, but was abundantly expressed in the submucosal plexus. TRPC4/6-IR was coexpressed with both cholinergic and nitrergic neurochemical codes in the myenteric plexus. In the submucosal plexus, TRPC4/6-IR was expressed exclusively in noncholinergic secretomotor neurons. No TRPC1/3/4/6-IR was found in calbindin-IR neurons. TRPC3/4/6-IR was widely expressed along varicose nerve fibers and colocalized with synaptophysin-IR at putative neurotransmitter release sites. Our results suggest important roles for TRPC channels in ENS physiology and neuronal regulation of gut function.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. 23776229

    Mitochondrial Ca(2+) homeostasis is fundamental to regulation of mitochondrial membrane potential, ATP production, and cellular Ca(2+) homeostasis. It has been known for decades that isolated mitochondria can take up Ca(2+) from the extramitochondrial solution, but the molecular identity of the Ca(2+) channels involved in this action is largely unknown. Here, we show that a fraction of canonical transient receptor potential 3 (TRPC3) channels is localized to mitochondria, a significant fraction of mitochondrial Ca(2+) uptake that relies on extramitochondrial Ca(2+) concentration is TRPC3-dependent, and the up- and down-regulation of TRPC3 expression in the cell influences the mitochondrial membrane potential. Our findings suggest that TRPC3 channels contribute to mitochondrial Ca(2+) uptake. We anticipate our observations may provide insights into the mechanisms of mitochondrial Ca(2+) uptake and advance understanding of the physiological role of TRPC3.
    Document Type:
    Reference
    Product Catalog Number:
    MABN748
    Product Catalog Name:
    Anti-TrpC3, clone 10H6 Antibody