Millipore Sigma Vibrant Logo
 

d1


677 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (457)
  • (184)
  • (13)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Cyclin D1 expression in podocytes: regulated by mitogens in collaboration with integrin-extracellular matrix interaction through extracellular signal-regulated kinase. 22678010

    Cyclin D1 plays significant roles in cell cycle entry and migration. We have documented that both integrin α3β1 expressions and the number of podocytes were reduced in focal segmental glomerulosclerosis. We wondered whether integrin-extracellular matrix (ECM) interaction was involved in the regulation of cyclin D1 expression, and the possible signaling pathways in mitogen-stimulating podocytes. Cultured podocytes were divided into serum (mitogens/growth factors)-starved and serum-stimulated groups. Reverse transcription polymerase chain reaction was used to detect cyclin D1 mRNA, and Western blot analysis was used to measure protein concentrations of cyclin D1 and extracellular signal-regulated kinase (ERK) activation (p-ERK/ERK). The integrin-ECM interaction was blocked by anti-β1-integrin monoclonal antibody or RGDS (Arg-Gly-Asp-Ser). The MEK inhibitor, U0126, was used to inhibit ERK activation. The results showed that there was little cyclin D1 protein in serum-starved groups, but it was abundant in serum-stimulated groups. Both cyclin D1 mRNA and protein levels were reduced in serum-stimulated podocytes after blocking integrin-ECM interaction. ERK activation in serum-stimulated podocytes was significantly decreased after blocking integrin-ECM interaction. Cyclin D1 mRNA and protein concentrations in serum-stimulated podocytes were reduced after blocking ERK activation by U0126. We demonstrate that integrin-ECM interaction collaborates with mitogens to activate ERK/mitogen-activated protein kinase pathways which are essential for cyclin D1 expression in podocytes.
    Document Type:
    Reference
    Product Catalog Number:
    MAB2253
    Product Catalog Name:
    Anti-Integrin β1 Antibody, clone 6S6
  • Cyclin D1 localizes in the cytoplasm of keratinocytes during skin differentiation and regulates cell-matrix adhesion. 23839032

    The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with β1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased β1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    06-137
  • Cyclin D1 activation in B-cell malignancy: association with changes in histone acetylation, DNA methylation, and RNA polymerase II binding to both promoter and distal seq ... 15226187

    Cyclin D1 expression is deregulated by chromosome translocation in mantle cell lymphoma and a subset of multiple myeloma. The molecular mechanisms involved in long-distance gene deregulation remain obscure, although changes in acetylated histones and methylated CpG dinucleotides may be important. The patterns of DNA methylation and histone acetylation were determined at the cyclin D1 locus on chromosome 11q13 in B-cell malignancies. The cyclin D1 promoter was hypomethylated and hyperacetylated in expressing cell lines and patient samples, and methylated and hypoacetylated in nonexpressing cell lines. Domains of hyperacetylated histones and hypomethylated DNA extended over 120 kb upstream of the cyclin D1 gene. Interestingly, hypomethylated DNA and hyperacetylated histones were also located at the cyclin D1 promoter but not the upstream major translocation cluster region in cyclin D1-nonexpressing, nontumorigenic B and T cells. RNA polymerase II binding was demonstrated both at the cyclin D1 promoter and 3' immunoglobulin heavy-chain regulatory regions only in malignant B-cell lines with deregulated cyclin D1 expression. Our results suggest a model where RNA polymerase II bound at IgH regulatory sequences can activate the cyclin D1 promoter by either long-range polymerase transfer or tracking.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty. 19074012

    The human hippocampus is critical for learning and memory. In rodents, hippocampal pyramidal neurons fire in a location-specific manner, forming relational representations of environmental cues. The importance of glutamatergic systems in learning and in hippocampal neural synaptic plasticity has been shown. However, the role of dopaminergic systems in the response of hippocampal neural plasticity to novel and familiar spatial stimuli remains unclear. To clarify this important issue, we recorded hippocampal neurons from dopamine D(1) receptor knock-out (D1R-KO) mice and their wild-type (WT) littermates under the manipulation of distinct spatial cues in a familiar and a novel environment. Here we report that in WT mice, the majority of place cells quickly responded to the manipulations of distal and proximal cues in both familiar and novel environments. In contrast, the influence of distal cues on spatial firing in D1R-KO mice was abolished. In the D1R-KO mice, the influence of proximal cues was facilitated in a familiar environment, and in a novel environment most of the place cells were less likely to respond to changes of spatial cues. Our results demonstrate that hippocampal neurons in mice can rapidly and flexibly encode information about space from both distal and proximal cues to cipher a novel environment. This ability is necessary for many types of learning, and lacking D1R can radically alter this learning-related neural activity. We propose that D1R is crucially implicated in encoding spatial information in novel environments, and influences the plasticity of hippocampal representations, which is important in spatial learning and memory.
    Document Type:
    Reference
    Product Catalog Number:
    ECM600
    Product Catalog Name:
    uPA Activity Assay Kit
  • Dopamine D1 receptor activation regulates the expression of the estrogen synthesis gene aromatase B in radial glial cells. 26388722

    Radial glial cells (RGCs) are abundant stem-like non-neuronal progenitors that are important for adult neurogenesis and brain repair, yet little is known about their regulation by neurotransmitters. Here we provide evidence for neuronal-glial interactions via a novel role for dopamine to stimulate RGC function. Goldfish were chosen as the model organism due to the abundance of RGCs and regenerative abilities of the adult central nervous system. A close anatomical relationship was observed between tyrosine hydroxylase-positive catecholaminergic cell bodies and axons and dopamine-D1 receptor expressing RGCs along the ventricular surface of telencephalon, a site of active neurogenesis. A primary cell culture model was established and immunofluorescence analysis indicates that in vitro RGCs from female goldfish retain their major characteristics in vivo, including expression of glial fibrillary acidic protein and brain lipid binding protein. The estrogen synthesis enzyme aromatase B is exclusively found in RGCs, but this is lost as cells differentiate to neurons and other glial types in adult teleost brain. Pharmacological experiments using the cultured RGCs established that specific activation of dopamine D1 receptors up-regulates aromatase B mRNA through a cyclic adenosine monophosphate-dependent molecular mechanism. These data indicate that dopamine enhances the steroidogenic function of this neuronal progenitor cell.
    Document Type:
    Reference
    Product Catalog Number:
    MAB360
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Dopamine D1 and D2 receptor immunoreactivities in the arcuate-median eminence complex and their link to the tubero-infundibular dopamine neurons. 25308843

    Dopamine D1 and D2 receptor immunohistochemistry and Golgi techniques were used to study the structure of the adult rat arcuate-median eminence complex, and determine the distribution of the dopamine D1 and D2 receptor immunoreactivities therein, particularly in relation to the tubero-infundibular dopamine neurons. Punctate dopamine D1 and D2 receptor immunoreactivities, likely located on nerve terminals, were enriched in the lateral palisade zone built up of nerve terminals, while the densities were low to modest in the medial palisade zone. A codistribution of dopamine D1 receptor or dopamine D2 receptor immunoreactive puncta with tyrosine hydroxylase immunoreactive nerve terminals was demonstrated in the external layer. Dopamine D1 receptor but not dopamine D2 receptor immnunoreactivites nerve cell bodies were found in the ventromedial part of the arcuate nucleus and in the lateral part of the internal layer of the median eminence forming a continuous cell mass presumably representing neuropeptide Y immunoreactive nerve cell bodies. The major arcuate dopamine/ tyrosine hydroxylase nerve cell group was found in the dorsomedial part. A large number of tyrosine hydroxylase immunoreactive nerve cell bodies in this region demonstrated punctate dopamine D1 receptor immunoreactivity but only a few presented dopamine D2 receptor immunoreactivity which were mainly found in a substantial number of tyrosine hydroxylase cell bodies of the ventral periventricular hypothalamic nucleus, also belonging to the tubero-infundibular dopamine neurons. Structural evidence for projections of the arcuate nerve cells into the median eminence was also obtained. Distal axons formed horizontal axons in the internal layer issuing a variable number of collaterals classified into single or multiple strands located in the external layer increasing our understanding of the dopamine nerve terminal networks in this region.  Dopamine D1 and D2 receptors may therefore directly and differentially modulate the activity and /or Dopamine synthesis of substantial numbers of tubero-infundibular dopamine neurons at the somatic and terminal level. The immunohistochemical work also gives support to the view that dopamine D1 receptors and/or dopamine D2 receptors in the lateral palisade zone by mediating dopamine volume transmission may contribute to the inhibition of luteinizing hormone releasing hormone release from nerve terminals in this region.
    Document Type:
    Reference
    Product Catalog Number:
    AB5084P
    Product Catalog Name:
    Anti-Dopamine D2 Receptor Antibody
  • D1/NMDA Receptors and Concurrent Methamphetamine+HIV-1 Tat Neurotoxicity. 22552781

    The interactive effects of HIV-1 infection and methamphetamine (METH) abuse in producing cognitive dysfunction represent a serious medical problem; however, the neural mechanisms underlying this interactive neurotoxicity remain elusive. In this study, we report that a combination of low, sub-toxic doses of METH + HIV-1 Tat 1-86 B, but not METH + HIV-1 gp120, directly induces death of rodent midbrain neurons in vitro. The effects of D1- and NMDA-receptor specific antagonists (SCH23390 and MK-801, respectively) on the neurotoxicity of different doses of METH or HIV-1 Tat alone and on the METH + HIV-1Tat interaction in midbrain neuronal cultures suggest that the induction of the cell death cascade by METH and Tat requires both dopaminergic (D1) and N-methyl D-aspartate (NMDA) receptor-mediated signaling. This interactive METH+Tat neurotoxicity does not occur in cultures of hippocampal neurons, which are predominately glutamatergic, express very low levels of dopamine receptors, and have no functional dopamine transporter (DAT). Thus, the presence of a subpopulation of neurons capable of dopamine release/uptake is essential for METH+Tat induction of the cell death cascade. Overall, our results support the hypothesis that METH and HIV-1 Tat disrupt the normal conjunction of signaling between D1 and NMDA receptors, resulting in neural dysfunction and death.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5290
    Product Catalog Name:
  • Protein kinase D1 mediates stimulation of DNA synthesis and proliferation in intestinal epithelial IEC-18 cells and in mouse intestinal crypts. 21051537

    We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p less than 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p less than 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo.
    Document Type:
    Reference
    Product Catalog Number:
    04-787
  • Cyclin D1 is transcriptionally down-regulated by ZO-2 via an E box and the transcription factor c-Myc. 17881732

    Recent reports have indicated the participation of tight junction (TJ) proteins in the regulation of gene expression and cell proliferation. Here, we have studied the role of zona occludens (ZO)-2, a TJ peripheral protein, in the regulation of cyclin D1 transcription. We found that ZO-2 down-regulates cyclin D1 transcription in a dose-dependent manner. To understand how ZO-2 represses cyclin D1 promoter activity, we used deletion analyses and found that ZO-2 negatively regulates cyclin D1 transcription via an E box and that it diminishes cell proliferation. Because ZO-2 does not associate directly with DNA, electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay were used to identify the transcription factors mediating the ZO-2-repressive effect. c-Myc was found to bind the E box present in the cyclin D1 promoter, and the overexpression of c-Myc augmented the inhibition generated by ZO-2 transfection. The presence of ZO-2 and c-Myc in the same complex was further demonstrated by immunoprecipitation. ChIP and reporter gene assays using histone deacetylases (HDACs) inhibitors demonstrated that HDACs are necessary for ZO-2 repression and that HDAC1 is recruited to the E box. We conclude that ZO-2 down-regulates cyclin D1 transcription by interacting with the c-Myc/E box element and by recruiting HDAC1.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • pp60(v-src) induction of cyclin D1 requires collaborative interactions between the extracellular signal-regulated kinase, p38, and Jun kinase pathways. A role for cAMP re ... 10066798

    The cyclin D1 gene is overexpressed in breast tumors and encodes a regulatory subunit of cyclin-dependent kinases that phosphorylate the retinoblastoma protein. pp60(c-src) activity is frequently increased in breast tumors; however, the mechanisms governing pp60(c-src) regulation of the cell cycle in breast epithelium are poorly understood. In these studies, pp60(v-src) induced cyclin D1 protein levels and promoter activity (48-fold) in MCF7 cells. Cyclin D1-associated kinase activity and protein levels were increased in mammary tumors from murine mammary tumor virus-pp60(c-src527F) transgenic mice. Optimal induction of cyclin D1 by pp60(v-src) involved the extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase members of the mitogen-activated protein kinase family. Cyclin D1 promoter activation by pp60(v-src) involved a cAMP response element-binding protein (CREB)/activating transcription factor 2 (ATF-2) binding site. Dominant negative mutants of CREB and ATF-2 but not c-Jun inhibited pp60(v-src) induction of cyclin D1. pp60(v-src) induction of CREB was blocked by the p38 inhibitor SB203580 or by mutation of CREB at Ser133. pp60(v-src) induction of ATF-2 was abolished by the c-Jun N-terminal kinase inhibitor JNK-interacting protein-1 or by mutation of ATF-2 at Thr69 and Thr71. CREB and ATF-2, which bind to a common pp60(v-src) response element, are transcriptionally activated by distinct mitogen-activated protein kinases. Induction of cyclin D1 activity by pp60(v-src) may contribute to breast tumorigenesis through phosphorylation and inactivation of the retinoblastoma protein.
    Document Type:
    Reference
    Product Catalog Number:
    06-255
    Product Catalog Name:
    Anti-JAK2 Antibody