Millipore Sigma Vibrant Logo
 

neuro cell signaling


1260 Results Advanced Search  
Showing
Products (0)
Documents (1,220)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Evidence for involvement of Wnt signalling in body polarities, cell proliferation, and the neuro-sensory system in an adult ctenophore. 24391946

    Signalling through the Wnt family of secreted proteins originated in a common metazoan ancestor and greatly influenced the evolution of animal body plans. In bilaterians, Wnt signalling plays multiple fundamental roles during embryonic development and in adult tissues, notably in axial patterning, neural development and stem cell regulation. Studies in various cnidarian species have particularly highlighted the evolutionarily conserved role of the Wnt/β-catenin pathway in specification and patterning of the primary embryonic axis. However in another key non-bilaterian phylum, Ctenophora, Wnts are not involved in early establishment of the body axis during embryogenesis. We analysed the expression in the adult of the ctenophore Pleurobrachia pileus of 11 orthologues of Wnt signalling genes including all ctenophore Wnt ligands and Fz receptors and several members of the intracellular β-catenin pathway machinery. All genes are strongly expressed around the mouth margin at the oral pole, evoking the Wnt oral centre of cnidarians. This observation is consistent with primary axis polarisation by the Wnts being a universal metazoan feature, secondarily lost in ctenophores during early development but retained in the adult. In addition, local expression of Wnt signalling genes was seen in various anatomical structures of the body including in the locomotory comb rows, where their complex deployment suggests control by the Wnts of local comb polarity. Other important contexts of Wnt involvement which probably evolved before the ctenophore/cnidarian/bilaterian split include proliferating stem cells and progenitors irrespective of cell types, and developing as well as differentiated neuro-sensory structures.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain. 17880698

    Heterotrimeric guanine nucleotide-binding regulatory proteins (G proteins), composed of G alpha, G beta, and G gamma subunits, are positioned at the inner face of the plasma membrane and relay signals from activated G protein-coupled cell surface receptors to various signaling pathways. G beta 5 is the most structurally divergent G beta isoform and forms tight heterodimers with regulator of G protein signalling (RGS) proteins of the R7 subfamily (R7-RGS). The subcellular localization of G beta 5/R7-RGS protein complexes is regulated by the palmitoylation status of the associated R7-binding protein (R7BP), a recently discovered SNARE-like protein. We investigate here whether R7BP controls the targeting of G beta 5/R7-RGS complexes to lipid rafts, cholesterol-rich membrane microdomains where conventional heterotrimeric G proteins and some effector proteins are concentrated in neurons and brain.We show that endogenous G beta 5/R7-RGS/R7BP protein complexes are present in native neuron-like PC12 cells and that a fraction is targeted to low-density, detergent-resistant membrane lipid rafts. The buoyant density of endogenous raft-associated G beta 5/R7-RGS protein complexes in PC12 cells was similar to that of lipid rafts containing the palmitoylated marker proteins PSD-95 and LAT, but distinct from that of the membrane microdomain where flotillin was localized. Overexpression of wild-type R7BP, but not its palmitoylation-deficient mutant, greatly enriched the fraction of endogenous G beta 5/R7-RGS protein complexes in the lipid rafts. In HEK-293 cells the palmitoylation status of R7BP also regulated the lipid raft targeting of co-expressed G beta 5/R7-RGS/R7BP proteins. A fraction of endogenous G beta 5/R7-RGS/R7BP complexes was also present in lipid rafts in mouse brain.A fraction of G beta 5/R7-RGS/R7BP protein complexes is targeted to low-density, detergent-resistant membrane lipid rafts in PC12 cells and brain. In cultured cells, the palmitoylation status of R7BP regulated the lipid raft targeting of endogenous or co-expressed G beta 5/R7-RGS proteins. Taken together with recent evidence that the kinetic effects of the G beta 5 complex on GPCR signaling are greatly enhanced by R7BP palmitoylation through a membrane-anchoring mechanism, our data suggest the targeting of the G beta 5/R7-RGS/R7BP complex to lipid rafts in neurons and brain, where G proteins and their effectors are concentrated, may be central to the G protein regulatory function of the complex.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. 21216957

    Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca(2+) concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca(2+) signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca(2+) chelator or a PLC inhibitor to block IP(3)-mediated Ca(2+) signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P(2), a precursor of IP(3), and resulted in increasing the intracellular Ca(2+) level, suggesting that EZH2 negatively regulates intracellular Ca(2+) through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P(2) contents and intracellular Ca(2+) release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca(2+) signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca(2+) signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Wnts enhance neurotrophin-induced neuronal differentiation in adult bone-marrow-derived mesenchymal stem cells via canonical and noncanonical signaling pathways. 25170755

    Wnts were previously shown to regulate the neurogenesis of neural stem or progenitor cells. Here, we explored the underlying molecular mechanisms through which Wnt signaling regulates neurotrophins (NTs) in the NT-induced neuronal differentiation of human mesenchymal stem cells (hMSCs). NTs can increase the expression of Wnt1 and Wnt7a in hMSCs. However, only Wnt7a enables the expression of synapsin-1, a synaptic marker in mature neurons, to be induced and triggers the formation of cholinergic and dopaminergic neurons. Human recombinant (hr)Wnt7a and general neuron makers were positively correlated in a dose- and time-dependent manner. In addition, the expression of synaptic markers and neurites was induced by Wnt7a and lithium, a glycogen synthase kinase-3β inhibitor, in the NT-induced hMSCs via the canonical/β-catenin pathway, but was inhibited by Wnt inhibitors and frizzled-5 (Frz5) blocking antibodies. In addition, hrWnt7a triggered the formation of cholinergic and dopaminergic neurons via the non-canonical/c-jun N-terminal kinase (JNK) pathway, and the formation of these neurons was inhibited by a JNK inhibitor and Frz9 blocking antibodies. In conclusion, hrWnt7a enhances the synthesis of synapse and facilitates neuronal differentiation in hMSCS through various Frz receptors. These mechanisms may be employed widely in the transdifferentiation of other adult stem cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Rac1b regulates NT3-stimulated Mek-Erk signaling, directing marrow-isolated adult multilineage inducible (MIAMI) cells toward an early neuronal phenotype. 22061968

    Due to the limitations of neural stem cells to repair neuronal damage in the human brain, alternative approaches of repair using autologous adult stem cells have been examined for direct cell-replacement, or paracrine mediated neuroprotective effects. Human bone marrow-derived stromal cells (hMSCs) are a heterogeneous adult stem cell population with diverse immunomodulatory properties and the potential to differentiate into cells characteristic of all three germ layers. hMSCs are a renewable source of progenitor cells suitable for cell-based tissue repair. The marrow isolated adult multilineage inducible (MIAMI) cells developed by our laboratory are a developmentally immature homogeneous subpopulation of hMSCs that maintain self-renewal potential during ex vivo expansion, efficient differentiation capacity into neuron-like cells in vitro, as well as direct in vivo neuroprotection and functional recovery in animal models of neurological diseases. We now address the early signaling mechanisms regulating the neuron-like differentiation of MIAMI cells in vitro, in response to activation of the neurotrophic tyrosine-kinase receptor, type 3 (NTRK3) via neurotrophin 3 (NT3). We molecularly characterize a novel role for Rac1b mediating the neurogenic potential of MIAMI cells. Rac1b had an overall negative modulatory effect on the NT3-stimulated Mek1/2-Erk1/2 signaling pathway, proneuronal gene expression and neurite-like extensions. Rac1b was required for NT3-stimulated cell proliferation of MIAMI cells, yet was found to repress CCND1 and CCNB1 mRNA expression independent of NT3 stimulation, suggesting a dual neurotrophin dependent/independent function. Differential levels of Rac1b activity in hMSCs may explain the apparent contradictory reports regarding their neurogenic potential. These findings demonstrate the in vitro neurogenic potential of hMSCs as governed by Rac1b during NT3 stimulation.
    Document Type:
    Reference
    Product Catalog Number:
    09-271
    Product Catalog Name:
    Anti-Rac1b Antibody
  • Role for TGF-beta superfamily signaling in telencephalic GABAergic neuron development. 20339443

    Signaling mechanisms mediated by the Transforming Growth Factor-beta (TGF-beta) superfamily regulate a variety of developmental processes. Here we show that components of both bone morphogenetic protein/growth differentiation factor and TGF-beta/activin/Nodal branches of TGF-beta superfamily signaling are expressed in the developing subpallium. Furthermore, Smad proteins, transcriptional effectors of TGF-beta signaling, are co-expressed and physically interact in the basal ganglia with Dlx homeodomain transcription factors, which are critical regulators of the differentiation, migration and survival of telencephalic GABAergic neurons. We also show that Dlx and Smad proteins localize to promoters/enhancers of a number of common telencephalic genes in vivo and that Smad proteins co-activate transcription with Dlx family members, except with certain mutated human DLX proteins identified in autistic individuals. In agreement with these observations, expression of dominant-negative Smads in the developing basal ganglia phenocopies the cell migration defects observed in Dlx1/2-deficient mice. Together, these results suggest that TGF-beta superfamily signaling plays a role in telencephalic GABAergic neuron development through functional interactions with Dlx transcription factors. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11689-009-9035-6) contains supplementary material, which is available to authorized users.
    Document Type:
    Reference
    Product Catalog Number:
    AB3849
    Product Catalog Name:
  • Arsenic exposure inhibits myogenesis and neurogenesis in P19 stem cells through repression of the β-catenin signaling pathway. 22641621

    Epidemiological studies have correlated embryonic arsenic exposure with adverse developmental outcomes such as stillbirths, neonatal mortality, and low birth weight. Additionally, arsenic exposure reduces neuronal cell migration and maturation, and reduces skeletal muscle cell formation, alters muscle fiber subtype, and changes locomotor activity. This study used P19 mouse embryonic stem cells to examine whether arsenic exposure could alter their differentiation into skeletal muscles and neurons. When P19 cells were exposed to 0.1, 0.5, or 1.0 μM sodium arsenite, embryoid body (EB) formation was not altered. However, arsenic suppressed their differentiation into muscles and neurons, as evidenced by morphological changes accompanied by a significant reduction in myosin heavy chain and Tuj1 expression. Real-time PCR, immunofluorescence, and immunoblotting were used to confirm that the altered differentiation was due to the repression of muscle- and neuron-specific transcription factors such as Pax3, Myf5, MyoD, myogenin, neurogenin 1, neurogenin 2, and NeuroD in the arsenite-exposed cells. The reductions in transcription factors expression appear to be caused by repressed Wnt/β-catenin signaling pathways in early embryogenesis, as evidenced by decreased β-catenin expression in the arsenic-exposed EBs on differentiation days 2 and 5. Interestingly, the expression of Nanog, a transcription factor that maintains the pluripotency of stem cells, was increased after arsenite exposure, indicating that arsenite inhibits their differentiation but not proliferation. This study demonstrates that arsenic can perturb the embryonic differentiation process by repressing the Wnt/β-catenin signaling pathway. More importantly, this study may provide insight into how arsenic exposure affects skeletal and neuronal differentiation during embryogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1637
    Product Catalog Name:
    Anti-Tubulin Antibody, beta III isoform, CT, clone TU-20 (Similar to TUJ1)
  • Enhanced neuronal Met signalling levels in ALS mice delay disease onset. 21412276

    Signalling by receptor tyrosine kinases (RTKs) coordinates basic cellular processes during development and in adulthood. Whereas aberrant RTK signalling can lead to cancer, reactivation of RTKs is often found following stress or cell damage. This has led to the common belief that RTKs can counteract degenerative processes and so strategies to exploit them for therapy have been extensively explored. An understanding of how RTK stimuli act at cellular levels is needed, however, to evaluate their mechanism of therapeutic action. In this study, we genetically explored the biological and functional significance of enhanced signalling by the Met RTK in neurons, in the context of a neurodegenerative disease. Conditional met-transgenic mice, namely Rosa26(LacZ-stop-Met), have been engineered to trigger increased Met signalling in a temporal and tissue-specific regulated manner. Enhancing Met levels in neurons does not affect either motor neuron (MN) development or maintenance. In contrast, increased neuronal Met in amyotrophic lateral sclerosis (ALS) mice prolongs life span, retards MN loss, and ameliorates motor performance, by selectively delaying disease onset. Thus, our studies highlight the properties of RTKs to counteract toxic signals in a disease characterized by dysfunction of multiple cell types by acting in MNs. Moreover, they emphasize the relevance of genetically assessing the effectiveness of agents targeting neurons during ALS evolution.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro. 17401440

    BACKGROUND AND PURPOSE: The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on excitotoxic neuronal damage was investigated in vitro. EXPERIMENTAL APPROACH: The study was performed in human SH-SY5Y neuroblastoma cells exposed to N-methyl-D-aspartate (NMDA). Cell viability was measured by dye exclusion. Reactive oxygen species (ROS) and caspase-3 activity were measured fluorimetrically. Calpain I activity and the activation (phosphorylation) of Akt and glycogen synthase kinase-3beta (GSK-3beta) were assayed by Western blotting. KEY RESULTS: NMDA induced concentration-dependent, receptor-mediated, death of SH-SY5Y cells, ranging from 11 to 25% (0.25-5 mM). Cell death induced by 1 mM NMDA (21%) was preceded by a significant accumulation of intracellular ROS and by a rapid activation of the calcium-activated protease calpain I. In addition, NMDA caused a rapid deactivation of Akt kinase and this preceded the detrimental activation of the downstream kinase, GSK-3beta. BEO (0.0005-0.01%) concentration dependently reduced death of SH-SY5Y cells caused by 1 mM NMDA. In addition to preventing ROS accumulation and activation of calpain, BEO (0.01%) counteracted the deactivation of Akt and the consequent activation of GSK-3beta, induced by NMDA. Results obtained by using specific fractions of BEO, suggested that monoterpene hydrocarbons were responsible for neuroprotection afforded by BEO against NMDA-induced cell death. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that BEO reduces neuronal damage caused in vitro by excitotoxic stimuli and that this neuroprotection was associated with prevention of injury-induced engagement of critical death pathways.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1622
    Product Catalog Name:
    Anti-Spectrin alpha chain (nonerythroid) Antibody, clone AA6
  • Differential roles of hyperglycemia and hypoinsulinemia in diabetes induced retinal cell death: evidence for retinal insulin resistance. 22046295

    Diabetes pathology derives from the combination of hyperglycemia and hypoinsulinemia or insulin resistance leading to diabetic complications including diabetic neuropathy, nephropathy and retinopathy. Diabetic retinopathy is characterized by numerous retinal defects affecting the vasculature and the neuro-retina, but the relative contributions of the loss of retinal insulin signaling and hyperglycemia have never been directly compared. In this study we tested the hypothesis that increased retinal insulin signaling and glycemic normalization would exert differential effects on retinal cell survival and retinal physiology during diabetes. We have demonstrated in this study that both subconjunctival insulin administration and systemic glycemic reduction using the sodium-glucose linked transporter inhibitor phloridzin affected the regulation of retinal cell survival in diabetic rats. Both treatments partially restored the retinal insulin signaling without increasing plasma insulin levels. Retinal transcriptomic and histological analysis also clearly demonstrated that local administration of insulin and systemic glycemia normalization use different pathways to counteract the effects of diabetes on the retina. While local insulin primarily affected inflammation-associated pathways, systemic glycemic control affected pathways involved in the regulation of cell signaling and metabolism. These results suggest that hyperglycemia induces resistance to growth factor action in the retina and clearly demonstrate that both restoration of glycemic control and retinal insulin signaling can act through different pathways to both normalize diabetes-induced retinal abnormality and prevent vision loss.
    Document Type:
    Reference
    Product Catalog Number:
    SRI-13K
    Product Catalog Name:
    Sensitive Rat Insulin RIA