Millipore Sigma Vibrant Logo
 

retinoid


163 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (123)
  • (38)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. 24255038

    Retinal pigmented epithelium derived from human induced pluripotent stem (iPS) cells (iPS-RPE) may be a source of cells for transplantation. For this reason, it is essential to determine the functional competence of iPS-RPE. One key role of the RPE is uptake and processing of retinoids via the visual cycle. The purpose of this study is to investigate the expression of visual cycle proteins and the functional ability of the visual cycle in iPS-RPE.iPS-RPE was derived from human iPS cells. Immunocytochemistry, RT-PCR, and Western blot analysis were used to detect expression of RPE genes lecithin-retinol acyl transferase (LRAT), RPE65, cellular retinaldehyde-binding protein (CRALBP), and pigment epithelium-derived factor (PEDF). All-trans retinol was delivered to cultured cells or whole cell homogenate to assess the ability of the iPS-RPE to process retinoids.Cultured iPS-RPE expresses visual cycle genes LRAT, CRALBP, and RPE65. After incubation with all-trans retinol, iPS-RPE synthesized up to 2942 ± 551 pmol/mg protein all-trans retinyl esters. Inhibition of LRAT with N-ethylmaleimide (NEM) prevented retinyl ester synthesis. Significantly, after incubation with all-trans retinol, iPS-RPE released 188 ± 88 pmol/mg protein 11-cis retinaldehyde into the culture media.iPS-RPE develops classic RPE characteristics and maintains expression of visual cycle proteins. The results of this study confirm that iPS-RPE possesses the machinery to process retinoids for support of visual pigment regeneration. Inhibition of all-trans retinyl ester accumulation by NEM confirms LRAT is active in iPS-RPE. Finally, the detection of 11-cis retinaldehyde in the culture medium demonstrates the cells' ability to process retinoids through the visual cycle. This study demonstrates expression of key visual cycle machinery and complete visual cycle activity in iPS-RPE.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5428
    Product Catalog Name:
    Anti-Retinal Pigment Epithelium 65 Antibody
  • Retinoid X receptor (gamma) is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina. 16043864

    The retinoid X receptors (RXRs) are members of the family of ligand-dependent nuclear hormone receptors. One of these genes, RXRgamma, is expressed in highly restricted regions of the developing central nervous system (CNS), including the retina. Although previous studies have localized RXRgamma to developing cone photoreceptors in several species, its function in these cells is unknown. A prior study showed that thyroid hormone receptor beta2 (TRbeta2) is necessary to establish proper cone patterning in mice by activating medium-wavelength (M) cone opsin and suppressing short-wavelength (S) cone opsin. Thyroid hormone receptors often regulate gene transcription as heterodimeric complexes with RXRs.To determine whether RXRgamma cooperates with TRbeta2 to regulate cone opsin patterning, the developmental expression of RXRgamma was examined, and cone opsin expression in RXRgamma-null mice was analyzed.RXRgamma was expressed in postmitotic cones and was transiently downregulated at the time of S-opsin onset in both mouse and human cones. RXRgamma-null mice expressed S-opsin in all cones, similar to the TRbeta2-null mice. Unlike TRbeta2-null mice, which did not express M-opsin, RXRgamma-null mice had a normal pattern of M-opsin expression.RXRgamma is essential (along with TRbeta2) for suppressing S-opsin in all immature cones and in dorsal cones in the mature retina, but it is not necessary for M-opsin regulation. These results demonstrate a critical role for RXRs in regulating cell differentiation in the CNS and highlight a remarkable conservation of opsin regulation from Drosophila to mammals.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Retinoid regulated association of transcriptional co-regulators and the polycomb group protein SUZ12 with the retinoic acid response elements of Hoxa1, RARbeta(2), and Cy ... 17663992

    Hox gene expression is activated by all-trans retinoic acid (RA), through binding to retinoic acid receptor-retinoid X receptor (RAR-RXR) heterodimers bound at RA response elements (RAREs) of target genes. The RARs and RXRs each have three isotypes (alpha, beta, and gamma), which are encoded by distinct genes. Hox genes are also repressed by polycomb group proteins (PcG), though how these proteins are targeted is unclear. We used chromatin immunoprecipitation assays to investigate the association of RXRalpha, RARgamma, cofactors, and the PcG protein SUZ12 with the Hoxa1, RARbeta2, and Cyp26A1 RAREs in F9 embryonal carcinoma cells (teratocarcinoma stem cells) during RA treatment. We demonstrate that RARgamma and RXRalpha are associated with RAREs prior to and during RA treatment. pCIP, p300, and RNA polymerase II levels increased at target RAREs upon exposure to RA. Conversely, SUZ12 was found associated with all RAREs studied and these associations were attenuated by treatment with RA. Upon RA removal, SUZ12 re-associated with RAREs. H3ac, H3K4me2, and H3K27me3 marks were simultaneously detected at target loci, indicative of a bivalent domain chromatin structure. During RA mediated differentiation, H3K27me3 levels decreased at target RAREs whereas H3ac and H3K4me2 levels remained constant. These studies provide insight into the dynamics of association of co-regulators with RAREs and demonstrate a novel link between RA signaling and PcG repression.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Retinoid X Receptor α-Dependent HBV Minichromosome Remodeling and Viral Replication. 28611266

    The HBV covalently closed circular DNA (cccDNA) is organized into a minichromosome in the nuclei of infected hepatocytes through interactions with histone and nonhistone proteins. Retinoid X receptor α (RXRα), a liver-enriched nuclear receptor, participates in regulation of HBV replication and transcription through modulation of HBV enhancer 1 and core promoter activity.This study investigated RXRα involvement in HBV cccDNA epigenetic modifications. Quantitative cccDNA chromatin immunoprecipitation (ChIP) was applied to study the recruitment of RXRα, histones, and chromatin-modifying enzymes to HBV minichromosome in HepG2 cells after transfection of the linear HBV genome.RXRα Was found to directly bind to HBV cccDNA; recruitment of RXRα to HBV mini-chromosome paralleled HBV replication, histone recruitment, and histone acetylation in HBVcccDNA. Moreover, RXRα overexpression or knock-down significantly increased or impaired the recruitment of the p300 acetyltransferase to cccDNAminichromosome.Our results confirmed the regulation of RXRα on HBV replication in vitro and demonstrated the modulation of RXRα on HBV cccDNA epigenetics. These findings provide a profound theoretical and experimental basis for late-model antiviral treatment acting on the HBV cccDNA and minichromosome.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Retinoid X receptors orchestrate osteoclast differentiation and postnatal bone remodeling. 25574839

    Osteoclasts are bone-resorbing cells that are important for maintenance of bone remodeling and mineral homeostasis. Regulation of osteoclast differentiation and activity is important for the pathogenesis and treatment of diseases associated with bone loss. Here, we demonstrate that retinoid X receptors (RXRs) are key elements of the transcriptional program of differentiating osteoclasts. Loss of RXR function in hematopoietic cells resulted in formation of giant, nonresorbing osteoclasts and increased bone mass in male mice and protected female mice from bone loss following ovariectomy, which induces osteoporosis in WT females. The increase in bone mass associated with RXR deficiency was due to lack of expression of the RXR-dependent transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene family, protein B (MAFB) in osteoclast progenitors. Evaluation of osteoclast progenitor cells revealed that RXR homodimers directly target and bind to the Mafb promoter, and this interaction is required for proper osteoclast proliferation, differentiation, and activity. Pharmacological activation of RXRs inhibited osteoclast differentiation due to the formation of RXR/liver X receptor (LXR) heterodimers, which induced expression of sterol regulatory element binding protein-1c (SREBP-1c), resulting in indirect MAFB upregulation. Our study reveals that RXR signaling mediates bone homeostasis and suggests that RXRs have potential as targets for the treatment of bone pathologies such as osteoporosis.
    Document Type:
    Reference
    Product Catalog Number:
    AB3914
  • SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. 10097068

    SMRT (silencing mediator for retinoid and thyroid hormone receptors) and N-CoR (nuclear receptor copressor) mediate transcriptional repression of important regulators that are involved in many signaling pathways. SMRT and N-CoR are related proteins that form complexes with mSin3A/B and histone deacetylases to induce local chromatin condensation and transcriptional repression. However, SMRT is substantially smaller than N-CoR, lacking an N-terminal domain of approximately 1,000 aa that are present in N-CoR. Here, we report the identification of SMRT-extended (SMRTe), which contains an N-terminal sequence that shows striking similarity with N-CoR. As in N-CoR, this SMRTe-N-terminal domain also represses basal transcription. We find that SMRTe expression is regulated during cell cycle progression and SMRTe transcripts are present in many embryonic tissues. These data redefine a structurally and functionally more related nuclear receptor corepressor family and suggest an additional role for SMRTe in the regulation of cycle-specific gene expression in diverse signaling pathways.
    Document Type:
    Reference
    Product Catalog Number:
    06-891
    Product Catalog Name:
    Anti-SMRTe Antibody
  • Ligand binding shifts highly mobile retinoid X receptor to the chromatin-bound state in a coactivator-dependent manner, as revealed by single-cell imaging. 24449763

    Retinoid X receptor (RXR) is a promiscuous nuclear receptor forming heterodimers with several other receptors, which activate different sets of genes. Upon agonist treatment, the occupancy of its genomic binding regions increased, but only a modest change in the number of sites was revealed by chromatin immunoprecipitation followed by sequencing, suggesting a rather static behavior. However, such genome-wide and biochemical approaches do not take into account the dynamic behavior of a transcription factor. Therefore, we characterized the nuclear dynamics of RXR during activation in single cells on the subsecond scale using live-cell imaging. By applying fluorescence recovery after photobleaching and fluorescence correlation spectroscopy (FCS), techniques with different temporal and spatial resolutions, a highly dynamic behavior could be uncovered which is best described by a two-state model (slow and fast) of receptor mobility. In the unliganded state, most RXRs belonged to the fast population, leaving ∼ 15% for the slow, chromatin-bound fraction. Upon agonist treatment, this ratio increased to ∼ 43% as a result of an immediate and reversible redistribution. Coactivator binding appears to be indispensable for redistribution and has a major contribution to chromatin association. A nuclear mobility map recorded by light sheet microscopy-FCS shows that the ligand-induced transition from the fast to the slow population occurs throughout the nucleus. Our results support a model in which RXR has a distinct, highly dynamic nuclear behavior and follows hit-and-run kinetics upon activation.
    Document Type:
    Reference
    Product Catalog Number:
    12-370
    Product Catalog Name:
    Normal Rabbit IgG
  • miR-10a contributes to retinoid acid-induced smooth muscle cell differentiation. 20118242

    MicroRNAs (miRs) have been reported to play a critical role in muscle differentiation and function. The purpose of this study is to determine the role of miRs during smooth muscle cell (SMC) differentiation from embryonic stem cells (ESCs). MicroRNA profiling showed that miR-10a expression is steadily increased during in vitro differentiation of mouse ESCs into SMCs. Loss-of-function approaches using miR-10a inhibitors uncovered that miR-10a is a critical mediator for SMC lineage determination in our retinoic acid-induced ESC/SMC differentiation system. In addition, we have documented for the first time that histone deacetylase 4 is a novel target of miR-10a and mediates miR-10a function during ESC/SMC differentiation. To determine the molecular mechanism through which retinoic acid induced miR-10a expression, a consensus NF-kappaB element was identified in the miR-10a gene promoter by bioinformatics analysis, and chromatin immunoprecipitation assay confirmed that NF-kappaB could bind to this element. Finally, inhibition of NF-kappaB nuclear translocation repressed miR-10a expression and decreased SMC differentiation from ESCs. Our data demonstrate for the first time that miR-10a is a novel regulator in SMC differentiation from ESCs. These studies suggest that miR-10a may play important roles in vascular biology and have implications for the diagnosis and treatment of vascular diseases.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Integration of growth factor, extracellular matrix, and retinoid signals during bronchial epithelial cell differentiation. 9774681

    Epithelial cell differentiation is regulated by specific combinations of growth factors, hormones, and extracellular matrix (ECM). How these divergent signals are integrated is largely unknown. We used primary cultures of normal human bronchial epithelial cells (NHBEs) to investigate mechanisms of signal integration. In defined, serum-free media, NHBEs undergo mucosecretory differentiation only when grown in the presence of retinoids and on the appropriate substratum (collagen gels). We identified the retinoic acid receptor beta (RARbeta) gene as an early marker of NHBE differentiation. In contrast to immortalized cell lines, in NHBEs strong retinoid-induced RARbeta transcription occurs only when cells are grown on collagen gels, and it requires new protein synthesis and a cis-acting element that maps outside the known RARbeta promoter elements. NHBEs grown on collagen gels exhibit reduced epidermal growth factor (EGF)-induced Raf, MEK, and mitogen-activated protein kinase (MAPK) activity. This correlates with a specific inability to achieve high levels of p66(SHC) tyrosyl phosphorylation and association of p66(SHC) with GRB2, despite high levels of EGF receptor (EGFR) autophosphorylation. Notably, inhibition of EGFR or MEK/MAPK activation replaces the ECM requirement for RARbeta induction. Our results strongly suggest that a key mechanism by which specific ECMs facilitate retinoid-induced mucosecretory differentiation of NHBEs is by restricting the level of EGFR-dependent MEK/MAPK activation evoked by autocrine and/or paracrine EGFR ligands.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The methyl transferase PRMT1 functions as co-activator of farnesoid X receptor (FXR)/9-cis retinoid X receptor and regulates transcription of FXR responsive genes. 15911693

    The farnesoid X receptor (FXR) is a nuclear receptor that functions as an endogenous sensor for bile acids (BAs). FXR is bound to and activated by bile acid, and chenodeoxycholic acid (CDCA) is the natural most active ligand. Upon activation, FXR heterodimerizes with the 9-cis retinoic X receptor (RXR) and regulates genes involved in cholesterol and BA homeostasis. 6-Ethyl CDCA (6-ECDCA) is a synthetic BA that binds FXR and induces gene transcription by recruiting coactivators, such as steroid receptor coactivator-1, with histone acetyltransferase activity. In addition to acetylation, histone methylation is critically involved in regulating eukaryotic gene expression. In the present study, we demonstrated that 6-ECDCA activates FXR to interacts with Protein Arginine Methyl-Transferase type I (PRMT1), which induces up-regulation of bile salt export pump (BSEP) and the small heterodimer partner (SHP) mRNA expression and causes a down-regulation of P450 cholesterol 7alpha-hydroxylase and Na(+) taurocholate cotransport peptide genes. Chromatin immunoprecipitation assay suggests that 6-ECDCA induces both the recruitment of PRMT1 and the H4 methylation to the promoter of BSEP and SHP genes. We also provide evidence that a methyltransferase inhibitor blocks the activation of FXR-responsive genes. Our results indicate that histone methylation, similar to acetylation, regulates transcriptional activation of genes involved in cholesterol and BAs homeostasis.
    Document Type:
    Reference
    Product Catalog Number:
    07-213
    Product Catalog Name:
    Anti-dimethyl-Histone H4 (Arg3) Antibody