Millipore Sigma Vibrant Logo
 

sal


835 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (150)
  • (39)
  • (7)
  • (4)
  • (4)
  • Show More

Application Type

  • (1)

Field of Activity

  • (1)

Parameter

  • (1)

Sample

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. 19139273

    The mechanisms of aberrant CpG island methylation in oncogenesis are not fully characterized. In particular, little is known about the mechanisms of inhibition of CpG island methylation. Here we show that sal-like 3 (SALL3) is a novel inhibitory factor for DNA methyltransferase 3 alpha (DNMT3A). SALL3 binds to DNMT3A by a direct interaction between the double zinc finger motif of SALL3 and the PWWP domain of DNMT3A. SALL3 expression reduces DNMT3A-mediated CpG island methylation in cell culture and in vitro. CpG island methylation is enhanced in SALL3-depleted cells. Consistently, DNMT3A from SALL3-depleted cells increases methyltransferase activity in vitro. Binding of DNMT3A to chromatin is reduced or increased by SALL3 expression or depletion, respectively, accounting for the mechanism by which SALL3 inhibits DNMT3A-mediated CpG island methylation. We also show that SALL3 is inducible by BMP-4 and silenced by associated DNA methylation in hepatocellular carcinoma (HCC). Our results suggest that silencing of SALL3 results in acceleration of DNA methylation in HCC. This functional characterization of SALL3 sheds light on regulatory mechanisms for DNMT3A and provides new strategies to inhibit aberrant methylation in cancer.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Metformin and salinomycin as the best combination for the eradication of NSCLC monolayer cells and their alveospheres (cancer stem cells) irrespective of EGFR, KRAS, EML4 ... 25375092

    The presence of cancer stem cells (CSCs) is linked to preexisting or acquired drug resistance and tumor relapse. Therefore, targeting both differentiated tumor cells and CSCs was suggested as an effective approach for non-small cell lung cancer (NSCLC) treatment. After screening of chemotherapeutic agents, tyrosine kinase inhibitors (TKIs) or monoclonal antibody in combination with the putative stem cell killer Salinomycin (SAL), we found Metformin (METF), which modestly exerted a growth inhibitory effect on monolayer cells and alveospheres/CSCs of 5 NSCLC cell lines regardless of their EGFR, KRAS, EML4/ALK and LKB1 status, interacted synergistically with SAL to effectively promote cell death. Inhibition of EGFR (AKT, ERK1/2) and mTOR (p70 s6k) signaling with the combination of METF and SAL can be augmented beyond that achieved using each agent individually. Phospho-kinase assay further suggested the multiple roles of this combination in reducing oncogenic effects of modules, such as ß-catenin, Src family kinases (Src, Lyn, Yes), Chk-2 and FAK. Remarkably, significant reduction of sphere formation was seen under combinatorial treatment in all investigated NSCLC cell lines. In conclusion, METF in combination with SAL could be a promising treatment option for patients with advanced NSCLC irrespective of their EGFR, KRAS, EML4/ALK and LKB1 status.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Mouse homolog of SALL1, a causative gene for Townes-Brocks syndrome, binds to A/T-rich sequences in pericentric heterochromatin via its C-terminal zinc finger domains. 17295837

    The Spalt (sal) gene family is conserved from Drosophila to humans. Mutations of human SALL1 cause Townes-Brocks syndrome, with features of ear, limb, anal, renal and heart anomalies. Sall1, a murine homolog of SALL1, is essential for kidney formation, and both Sall1 and SALL1 localize to heterochromatin in the nucleus. Here, we present a molecular mechanism for the heterochromatin localization of Sall1. Mutation analyses revealed that the 7th-10th C-terminal double zinc finger motifs were required for the localization. A recombinant protein of the most C-terminal double zinc finger (9th-10th) bound to specific A/T-rich sequences. Furthermore, Sall1 associated with A/T-rich sequences of the major satellite DNA in heterochromatin. Thus Sall1 may bind to A/T-rich sequences of the major satellite DNA via its C-terminal double zinc fingers, thereby mediating its localization to heterochromatin.
    Document Type:
    Reference
    Product Catalog Number:
    07-523
    Product Catalog Name:
    Anti-trimethyl-Histone H3 (Lys9) Antibody
  • The endoplasmic reticulum stress inhibitor salubrinal inhibits the activation of autophagy and neuroprotection induced by brain ischemic preconditioning. 23603983

    To investigate whether endoplasmic reticulum (ER) stress participates in the neuroprotective effects of ischemic preconditioning (IPC)-induced neuroprotection and autophagy activation in rat brains.The right middle cerebral artery in SD rats was occluded for 10 min to induce focal cerebral IPC, and was occluded permanently 24 h later to induce permanent focal ischemia (PFI). ER stress inhibitor salubrinal (SAL) was injected via intracerebral ventricle infusion 10 min before the onset of IPC. Infarct volume and motor behavior deficits were examined after the ischemic insult. The protein levels of LC3, p62, HSP70, glucose-regulated protein 78 (GRP 78), p-eIF2α and caspase-12 in the ipsilateral cortex were analyzed using immunoblotting. LC3 expression pattern in the sections of ipsilateral cortex was observed with immunofluorescence.Pretreatment with SAL (150 pmol) abolished the neuroprotective effects of IPC, as evidenced by the significant increases in mortality, infarct volume and motor deficits after PFI. At the molecular levels, pretreatment with SAL (150 pmol) significantly increased p-eIF2α level, and decreased GRP78 level after PFI, suggesting that SAL effectively inhibited ER stress in the cortex. Furthermore, the pretreatment with SAL blocked the IPC-induced upregulation of LC3-II and downregulation of p62 in the cortex, thus inhibiting the activation of autophagy. Moreover,SAL blocked the upregulation of HSP70, but significantly increased the cleaved caspase-12 level, thus promoting ER stress-dependent apoptotic signaling in the cortex.ER stress-induced autophagy might contribute to the neuroprotective effect of brain ischemic preconditioning.
    Document Type:
    Reference
    Product Catalog Number:
    AB3613
    Product Catalog Name:
    Anti-Caspase 12 Antibody, NT
  • Genetically modified "obligate" anaerobic Salmonella typhimurium as a therapeutic strategy for neuroblastoma. 26286454

    Neuroblastoma currently has poor prognosis, therefore we proposed a new strategy by targeting neuroblastoma with genetically engineered anaerobic Salmonella (Sal-YB1).Nude and nonobese diabetic-severe combined immunodeficiency (NOD-SCID) orthotopic mouse models were used, and Sal-YB1 was administered via tail vein. The therapeutic effectiveness, bio-safety, and mechanisms were studied.No mice died of therapy-related complications. Tumor size reduction was 70 and 30% in nude and NOD-SCID mice, respectively. No Salmonella was detected in the urine; 75% mice had positive stool culture if diaminopimelic acid was added, but all turned negative subsequently. Tumor tissues had more Sal-YB1 infiltration, necrosis, and shrinkage in Sal-YB1-treated mice. Significantly higher expression of TLR4, TNF-stimulated gene 6 protein (TSG6), and cleaved caspase 1, 3, 8, and 9 was found in the tumor masses of the Sal-YB1-treated group with a decrease of interleukin 1 receptor-associated kinase (IRAK) and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα). There was a high release of TNFα both in human macrophages and mouse tumor tissues with Sal-YB1 treatment. The antitumor effect of the supernatant derived from macrophages treated with Sal-YB1 could be reversed with TNFα and pan-caspase inhibitors.This new approach in targeting neuroblastoma by bio-engineered Salmonella with the assistance of macrophages indirectly may have a clinical therapeutic impact in the future.
    Document Type:
    Reference
    Product Catalog Number:
    06-872
    Product Catalog Name:
    Anti-IRAK Antibody
  • Autophagy regulates endoplasmic reticulum stress in ischemic preconditioning. 22361585

    Recent studies have suggested that autophagy plays a prosurvival role in ischemic preconditioning (IPC). This study was taken to assess the linkage between autophagy and endoplasmic reticulum (ER) stress during the process of IPC. The effects of IPC on ER stress and neuronal injury were determined by exposure of primary cultured murine cortical neurons to 30 min of OGD 24 h prior to a subsequent lethal OGD. The effects of IPC on ER stress and ischemic brain damage were evaluated in rats by a brief ischemic insult followed by permanent focal ischemia (PFI) 24 h later using the suture occlusion technique. The results showed that both IPC and lethal OGD increased the LC3-II expression and decreased p62 protein levels, but the extent of autophagy activation was varied. IPC treatment ameliorated OGD-induced cell damage in cultured cortical neurons, whereas 3-MA (5-20 mM) and bafilomycin A 1 (75-150 nM) suppressed the neuroprotection induced by IPC. 3-MA, at the dose blocking autophagy, significantly inhibited IPC-induced HSP70, HSP60 and GRP78 upregulation; meanwhile, it also aggregated the ER stress and increased activated caspase-12, caspase-3 and CHOP protein levels both in vitro and in vivo models. The ER stress inhibitor Sal (75 pmol) recovered IPC-induced neuroprotection in the presence of 3-MA. Rapamycin 50-200 nM in vitro and 35 pmol in vivo 24 h before the onset of lethal ischemia reduced ER stress and ischemia-induced neuronal damage. These results demonstrated that pre-activation of autophagy by ischemic preconditioning can boost endogenous defense mechanisms to upregulate molecular chaperones, and hence reduce excessive ER stress during fatal ischemia.
    Document Type:
    Reference
    Product Catalog Number:
    AB3613
    Product Catalog Name:
    Anti-Caspase 12 Antibody, NT
  • Epstein-Barr virus nuclear antigen 3A promotes cellular proliferation by repression of the cyclin-dependent kinase inhibitor p21WAF1/CIP1. 25275486

    Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft assays, Wp-R BL cell lines were notably more tumorigenic than their counterparts that maintain Latency I, suggesting that the additional latency-associated proteins expressed in Wp-R influence cell proliferation and/or survival. Here, we evaluated the contribution of EBNA-3A. Consistent with the enhanced tumorigenic potential of Wp-R BLs, knockdown of EBNA-3A expression resulted in abrupt cell-cycle arrest in G0/G1 that was concomitant with conversion of retinoblastoma protein (Rb) to its hypophosphorylated state, followed by a loss of Rb protein. Comparable results were seen in EBV-immortalized B lymphoblastoid cell lines (LCLs), consistent with the previous observation that EBNA-3A is essential for sustained growth of these cells. In agreement with the known ability of EBNA-3A and EBNA-3C to cooperatively repress p14(ARF) and p16(INK4a) expression, knockdown of EBNA-3A in LCLs resulted in rapid elevation of p14(ARF) and p16I(NK4a). By contrast, p16(INK4a) was not detectably expressed in Wp-R BL and the low-level expression of p14(ARF) was unchanged by EBNA-3A knockdown. Amongst other G1/S regulatory proteins, only p21(WAF1/CIP1), a potent inducer of G1 arrest, was upregulated following knockdown of EBNA-3A in Wp-R BL Sal cells and LCLs, coincident with hypophosphorylation and destabilization of Rb and growth arrest. Furthermore, knockdown of p21(WAF1/CIP1) expression in Wp-R BL correlated with an increase in cellular proliferation. This novel function of EBNA-3A is distinct from the functions previously described that are shared with EBNA-3C, and likely contributes to the proliferation of Wp-R BL cells and LCLs.
    Document Type:
    Reference
    Product Catalog Number:
    MAB4133
    Product Catalog Name:
    Anti-p16 Antibody, clone D25
  • Sall3 is required for the terminal maturation of olfactory glomerular interneurons. 18260139

    Sall3 is a zinc finger containing putative transcription factor and a member of the Sall gene family. Members of the Sall gene family are highly expressed during development. Sall3-deficient mice die in the perinatal period because of dehydration and display alterations in palate formation and cranial nerve formation (Parrish et al. [2004] Mol Cell Biol 24:7102-7112). We examined the role of Sall3 in the development of the olfactory system. We determined that Sall3 is expressed by cells in the olfactory epithelium and olfactory bulb. Sall3 deficiency specifically alters formation of the glomerular layer. The glomerular layer was hypocellular, because of a decrease in the number of interneurons. The lateral ganglionic eminence and rostral migratory stream developed normally in Sall3-deficient animals, which suggests that Sall3 is not required for the initial specification of olfactory bulb interneurons. Fewer GAD65/67-, Pax6-, calretinin-, and calbindin-positive cells were detected in the glomerular layer, accompanied by an increase in cells positive for these markers in the granule cell layer. In addition, a complete absence of tyrosine hydroxylase expression was observed in the olfactory bulb in the absence of Sall3. However, expression of Nurr1, a marker of dopaminergic precursors, was maintained, indicating that dopaminergic precursors were present. Our data suggest that Sall3 is required for the terminal maturation of neurons destined for the glomerular layer.
    Document Type:
    Reference
    Product Catalog Number:
    AB5054
  • Phosphorylated Smad2/3 immunoreactivity in sporadic and familial amyotrophic lateral sclerosis and its mouse model. 18210139

    Phosphorylated Smad2/3 (pSmad2/3), the central mediators of transforming growth factor (TGF)-beta signaling, were recently identified in tau-positive inclusions in certain neurodegenerative disorders. To clarify whether the localization of pSmad2/3 is altered in amyotrophic lateral sclerosis (ALS), we immunohistochemically examined spinal cords from sporadic ALS (SALS), from familial ALS (FALS) patients with the A4V mutation in their Cu/Zn superoxide dismutase (SOD1) gene, and from G93A mutant SOD1 transgenic (mSOD1 Tg) mice. In control spinal cords, pSmad2/3 immunoreactivity was observed exclusively in neuronal and glial nuclei. In SALS and FALS patients the nuclei showed increased immunoreactivity for pSmad2/3. Noticeably, round hyaline inclusions (RHIs) and skein-like inclusions of SALS patients were immunoreactive for pSmad2/3. Double immunofluorescence staining for pSmad2/3 and transactive response-DNA-binding protein (TDP)-43 revealed co-localization of these proteins within RHIs. In contrast, Bunina bodies in SALS and Lewy body-like hyaline inclusions (LBHIs) in FALS were devoid of labeling for pSmad2/3. Similarly, in the mSOD1 Tg mice pSmad2/3 immunoreactivity was increased in the nuclei, while LBHIs were not labeled. These findings suggest increased TGF-beta-Smad signaling in SALS, FALS, and mSOD1 Tg mice, as well as impaired TGF-beta signal transduction in RHI-bearing neurons of SALS patients, presumably at the step of pSmad2/3 translocation into the nucleus. The pathomechanisms, including the process of inclusion development, appears to be different between SALS and mSOD1-related FALS or Tg mice.
    Document Type:
    Reference
    Product Catalog Number:
    AP180C
    Product Catalog Name:
    Donkey Anti-Goat IgG Antibody, Cy3 conjugate, Species Adsorbed
  • Conformational specificity of the C4F6 SOD1 antibody; low frequency of reactivity in sporadic ALS cases. 24887207

    Greater than 160 missense mutations in copper-zinc superoxide dismutase-1 (SOD1) can cause amyotrophic lateral sclerosis (ALS). These mutations produce conformational changes that reveal novel antibody binding epitopes. A monoclonal antibody, clone C4F6 - raised against the ALS variant G93A of SOD1, has been identified as specifically recognizing a conformation shared by many ALS mutants of SOD1. Attempts to determine whether non-mutant SOD1 adopts a C4F6-reactive conformation in spinal tissues of sporadic ALS (sALS) patients has produced inconsistent results. To define the epitope recognized by C4F6, we tested its binding to a panel of recombinant ALS-SOD1 proteins expressed in cultured cells, producing data to suggest that the C4F6 epitope minimally contains amino acids 90-93, which are normally folded into a tight hairpin loop. Multiple van der Waals interactions between the 90-93 loop and a loop formed by amino acids 37-42, particularly a leucine at position 38, form a stable structure termed the β-plug. Based on published modeling predictions, we suggest that the binding of C4F6 to multiple ALS mutants of SOD1 occurs when the local structure within the β-plug, including the loop at 90-93, is destabilized. In using the antibody to stain tissues from transgenic mice or humans, the specificity of the antibody for ALS mutant SOD1 was influenced by antigen retrieval protocols. Using conditions that showed the best discrimination between normal and misfolded mutant SOD1 in cell and mouse models, we could find no obvious difference in C4F6 reactivity to spinal motor neurons between sALS and controls tissues.
    Document Type:
    Reference
    Product Catalog Number:
    ABC20
    Product Catalog Name:
    Anti-Cystatin-C Antibody