Millipore Sigma Vibrant Logo
 

scr001 OR scr002 OR SCR078 OR FCSC100107


37 Results Advanced Search  
Showing
Products (0)
Documents (37)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (24)
  • (9)
  • (1)
  • (1)
  • (1)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Establishment of rat embryonic stem cells and making of chimera rats. 18665239

    The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES) cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA) -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Cardiac commitment of primate embryonic stem cells. 18772864

    Primate nonhuman and human embryonic stem (ES) cells provide a powerful model of early cardiogenesis. Furthermore, engineering of cardiac progenitors or cardiomyocytes from ES cells offers a tool for drug screening in toxicology or to search for molecules to improve and scale up the process of cardiac differentiation using high-throughput screening technology, as well as a source of cell therapy of heart failure. Spontaneous differentiation of ES cells into cardiomyocytes is, however, limited. Herein, we describe a simple protocol to commit both rhesus and human ES cells toward a cardiac lineage and to sort out early cardiac progenitors. Primate ES cells are challenged for 4 d with the cardiogenic morphogen bone morphogenetic protein 2 (BMP2) and sorted out using anti-SSEA-1 antibody-conjugated magnetic beads. Cardiac progenitor cells can be generated and isolated in 4 d using this protocol.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Establishment and characterization of new human embryonic stem cell lines. 15949219

    Human embryonic stem cells (hESC), with their ability to differentiate into all cell types in the human body, are likely to play a very important therapeutic role in a variety of neurodegenerative and life-threatening disorders in the near future. Although more than 120 different human embryonic stem cell lines have been reported worldwide, only a handful are currently available for researchers, which limits the number of studies that can be performed. This study reports the isolation, establishment and characterization of new human embryonic stem cell lines, as well as their differentiation potential into variety of somatic cell types. Blastocyst-stage embryos donated for research after assisted reproductive techniques were used for embryonic stem cell isolation. A total of 31 blastocysts were processed either for immunosurgery or direct culture methods for inner cell mass isolation. A total of nine primary stem cell colonies were isolated and of these, seven cell lines were further expanded and passaged. Established lines were characterized by their cellular and colony morphology, karyotypes and immunocytochemical properties. They were also successfully cryopreserved/thawed and showed similar growth and cellular properties upon thawing. When induced to differentiate in vitro, these cells formed a variety of somatic cell lineages including cells of endoderm, ectoderm and mesoderm origin. There is now an exponentially growing interest in stem cell biology as well as its therapeutic applications for life-threatening human diseases. However, limited availability of stem cell lines as well as financial or ethical limitations restrict the number of research projects. The establishment of new hESC lines may create additional potential sources for further worldwide and nationwide research on stem cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple