Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
Astrocytes expressing the aquaporin-4 water channel are a primary target of pathogenic, disease-specific immunoglobulins (IgG) found in patients with neuromyelitis optica (NMO). Immunopathological analyses of active NMO lesions highlight a unique inflammatory phenotype marked by infiltration of granulocytes. Previous studies characterized this granulocytic infiltrate as a response to vasculocentric complement activation and localized tissue destruction. In contrast, we observe that granulocytic infiltration in NMO lesions occurs independently of complement-mediated tissue destruction or active demyelination. These immunopathological findings led to the hypothesis that NMO IgG stimulates astrocyte signaling that is responsible for granulocytic recruitment in NMO.Histopathology was performed on archival formalin-fixed paraffin-embedded autopsy-derived CNS tissue from 23 patients clinically and pathologically diagnosed with NMO or NMO spectrum disorder. Primary murine astroglial cultures were stimulated with IgG isolated from NMO patients or control IgG from healthy donors. Transcriptional responses were assessed by microarray, and translational responses were measured by ELISA. Signaling through the NFκB pathway was measured by western blotting and immunostaining.Stimulation of primary murine astroglial cultures with NMO IgG elicited a reactive and inflammatory transcriptional response that involved signaling through the canonical NFκB pathway. This signaling resulted in the release of pro-granulocytic chemokines and was inhibited by the clinically relevant proteasome inhibitors bortezomib and PR-957.We propose that the astrocytic NFκB-dependent inflammatory response to stimulation by NMO IgG represents one of the earliest events in NMO pathogenesis, providing a target for therapeutic intervention upstream of irreversible cell death and tissue damage.
Document Type:
Reference
Product Catalog Number:
MAB360
Product Catalog Name:
Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5 - (Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5)
Adherent cells require proper integrin-mediated extracellular matrix (ECM) engagement for growth and survival; normal cells deprived of proper ECM contact undergo anoikis. At the same time, autophagy is induced as a survival pathway in both fibroblasts and epithelial cells upon ECM detachment. Here, we further define the intracellular signals that mediate detachment-induced autophagy and uncover an important role for the IκB kinase (IKK) complex in the induction of autophagy in mammary epithelial cells (MECs) deprived of ECM contact. Whereas the PI3K-AKT-MTORC1 pathway activation potently inhibits autophagy in ECM-detached fibroblasts, enforced activation of this pathway is not sufficient to suppress detachment-induced autophagy in MECs. Instead, inhibition of IKK, as well as its upstream regulator, MAP3K7/TAK1, significantly attenuates detachment-induced autophagy in MECs. Furthermore, function-blocking experiments corroborate that both IKK activation and autophagy induction result from decreased ITGA3-ITGB1 (α3β1 integrin) function. Finally, we demonstrate that pharmacological IKK inhibition enhances anoikis and accelerates luminal apoptosis during acinar morphogenesis in three-dimensional culture. Based on these results, we propose that the IKK complex functions as a key mediator of detachment-induced autophagy and anoikis resistance in epithelial cells.
MicroRNAs (miRNAs) have negative effects on gene expression and are major players in cell function in normal and pathological conditions. Epstein-Barr virus (EBV) infection of resting B lymphocytes results in their growth transformation and associates with different B cell lymphomas. EBV-mediated B cell transformation involves large changes in gene expression, including cellular miRNAs. We performed miRNA expression analysis in growth transformation of EBV-infected B cells. We observed predominant downregulation of miRNAs and upregulation of a few miRNAs. We observed similar profiles of miRNA expression in B cells stimulated with CD40L/IL-4, and those infected with EBNA-2- and LMP-1-deficient EBV particles, suggesting the implication of the NF-kB pathway, common to all four situations. In fact, the NF-kB subunit p65 associates with the transcription start site (TSS) of both upregulated and downregulated miRNAs following EBV infection This occurs together with changes at histone H3K27me3 and histone H3K4me3. Inhibition of the NF-kB pathway impairs changes in miRNA expression, NF-kB binding and changes at the above histone modifications near the TSS of these miRNA genes. Changes in expression of these miRNAs also occurred in diffuse large B cell lymphomas (DLBCL), which are strongly NF-kB dependent. Our results highlight the relevance of the NF-kB pathway in epigenetically mediated miRNA control in B cell transformation and DLBCL.
In the present study, we have examined whether IKKβ [IκB (inhibitor of nuclear factor κB) kinase β] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKβ, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKβ as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKβ via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKβ target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKβ in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKβ. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKβ to IRS1, supporting our findings that IKKβ, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.
CD274, one of two co-stimulatory ligands for programmed death 1 and widely expressed in the mononuclear phagocyte system (MPS), may co-stimulate T cells and regulates inflammatory responses. However, changes in CD274 gene expression and the underlying molecular mechanism are poorly understood during inflammatory responses. Therefore, delineation of the complex mechanisms regulating CD274 expression is critical to understand this immunoregulatory system during inflammatory responses. The purpose of this study was to assess the molecular mechanisms regulating CD274 expression in an in vitro monocyte model of inflammatory response. Firstly, CD274 expression levels in human primary monocytes after lipopolysaccharide (LPS) treatment were observed and correlated with NF-κB activation. Secondly, based on the distribution of putative NF-κB binding sites, 5' truncated human CD274 promoter reporters were constructed, transfected into U937 cells and critical promoter regions for basal (nt -570 to +94) and LPS-induced (nt -1735 to -570) transcription were identified by dual luciferase assays. Finally, a key NF-κB binding site (nt -610 to -601) for LPS-inducible CD274 transcriptional activity was characterized by point mutation analysis and chromatin immunoprecipitation analysis assays (ChIP). Thus, the present study establishes a molecular basis to understand the mechanisms governing CD274 expression in certain infections and inflammatory disorders.