Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

tgf-


844 Results Advanced Search  
Showing
Products (0)
Documents (835)

Search Within Add keywords to narrow your search results

Narrow Your Results Use the filters below to refine your search

Document Type

  • (595)
  • (231)
  • (3)
  • (3)
  • (2)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • The TGFβ receptor-interacting protein km23-1/DYNLRB1 plays an adaptor role in TGFβ1 autoinduction via its association with Ras. 22637579

    We have previously elucidated the signaling events that are required for TGFβ1 autoinduction (Yue, J., and Mulder, K. M. (2000) J. Biol. Chem. 275, 30765-30773). Further, we have reported that the TGFβ receptor (TβR)-interacting protein km23-1 plays an important role in TGFβ signal transduction (Jin, Q., Ding, W., and Mulder, K. M. (2007) J. Biol. Chem. 282, 19122-19132). Here we examined the role of km23-1 in TGFβ1 autoinduction in TGFβ-sensitive epithelial cells. siRNA blockade of km23-1 reduced TGFβ1 mRNA expression, as well as DNA binding and transcriptional activation of the relevant activator protein-1 site in the human TGFβ1 promoter. Further, knockdown of km23-1 inhibited TGFβ-mediated activation of ERK and JNK, phosphorylation of c-Jun, and transactivation of the c-Jun promoter. Sucrose gradient analyses indicate that km23-1 was present in lipid rafts together with Ras and TβRII after TGFβ treatment. Immunoprecipitation/blot analyses revealed the formation of a TGFβ-inducible complex between Ras and km23-1 in vivo within minutes of TGFβ addition. Moreover, we demonstrate for the first time that km23-1 is required for Ras activation by TGFβ. Our results indicate that km23-1 is required for TGFβ1 autoinduction through Smad2-independent Ras/ERK/JNK pathways. More importantly, our findings demonstrate that km23-1 functions as a critical adaptor coupling TβR activation to activation of Ras effector pathways downstream.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Expression of TGFβ superfamily components and other markers of oocyte quality in oocytes selected by brilliant cresyl blue staining: relevance to early embryonic developm ... 25704641

    Brilliant cresyl blue (BCB) is a super-vital stain that has been used to select competent oocytes in different species. One objective of the present study was to assess the relationship between BCB staining, which correlates with an oocyte's developmental potential, and the transcript abundance for select TGFβ-superfamily components, SMAD2/3 and SMAD1/5 phosphorylation levels, and oocyte (JY1) and cumulus-cell (CTSB, CTSK, CTSS, and CTSZ) transcript markers in bovine oocytes and/or adjacent cumulus cells. The capacity of exogenous follistatin or JY1 supplementation or cathepsin inhibitor treatment to enhance development of embryos derived from low-quality oocytes, based on BCB staining, was also determined. Cumulus-oocyte complexes (COCs) from abattoir-derived ovaries were subjected to BCB staining, and germinal-vesicle-stage oocytes and cumulus cells were harvested from control, BCB+, and BCB- (low-quality oocyte) groups for real-time PCR or Western-blot analysis. Remaining COCs underwent in vitro maturation, in vitro fertilization, and embryo culture in the presence or absence of the above exogenous supplements. Levels of FST, JY1, BMP15, and SMAD1, 2, 3, and 5 transcripts were higher in BCB+ oocytes whereas CTSB, CTSK, CTSS, and CTSZ mRNA abundance was higher in cumulus cells surrounding BCB- oocytes. Western-blot analysis revealed higher SMAD1/5 and SMAD2/3 phosphorylation in BCB+ than BCB- oocytes. Embryo-culture studies demonstrated that follistatin and cathepsin inhibitor treatment, but not JY-1 treatment, improve the developmental competence of BCB- oocytes. These results contribute to a better understanding of molecular indices of oocyte competence.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501
    Product Catalog Name:
    Anti-Actin Antibody, clone C4 - (Anti-Actin Antibody, clone C4)
  • TGFβ-induced c-Myb affects the expression of EMT-associated genes and promotes invasion of ER+ breast cancer cells. 22101269

    Advanced breast cancer cells acquire metastatic properties in response to TGFβ. We show here that the expression of c-Myb increases in TGFβ-treated ER (+) breast cancer cells by protein stabilization, transcription activation and release from miR200-dependent down-regulation. In particular, we mapped 2 sites for miR200b, miR200c and miR429 binding in the 3' UTR of the human c-myb gene. These microRNAs decreased the expression of c-Myb when transfected in MCF-7 cells. In addition, luciferase activity from a vector containing the 3' UTR of the c-myb gene was inhibited by miR200s through a binding-dependent mechanism. siRNA- and shRNA-mediated down-regulation was used to investigate the role of c-Myb for the effects induced by TGFβ in ER(+) breast cancer MCF-7 and ZR-75.1 cells. Transfection with c-Myb siRNAs blocked the increase of Slug (SNAI2) and Bcl-2 expression and reversed the decrease in E-cadherin expression induced by TGF-β treatment. Conversely, c-Myb down-regulation decreased invasion and anchorage-independent growth of breast cancer cells expressing a constitutively active TGFβ receptor I. Finally, apoptosis induced by etoposide increased in c-Myb-silenced TGFβ-treated ER(+) cell lines. In summary, exposure of ER(+) breast cancer cells to TGFβ induces an increase of c-Myb expression which is required for expression of EMT-associated markers, in vitro invasion and anchorage-independent growth. Furthermore, our findings suggest a potentially detrimental effect of TGFβ and c-Myb co-expression in breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    05-175
    Product Catalog Name:
    Anti-Myb Antibody, clone 1-1 - (Anti-Myb Antibody, clone 1-1)
  • TGFβ signaling in the brain increases with aging and signals to astrocytes and innate immune cells in the weeks after stroke. 20937129

    TGFβ is both neuroprotective and a key immune system modulator and is likely to be an important target for future stroke therapy. The precise function of increased TGF-β1 after stroke is unknown and its pleiotropic nature means that it may convey a neuroprotective signal, orchestrate glial scarring or function as an important immune system regulator. We therefore investigated the time course and cell-specificity of TGFβ signaling after stroke, and whether its signaling pattern is altered by gender and aging.We performed distal middle cerebral artery occlusion strokes on 5 and 18 month old TGFβ reporter mice to get a readout of TGFβ responses after stroke in real time. To determine which cell type is the source of increased TGFβ production after stroke, brain sections were stained with an anti-TGFβ antibody, colocalized with markers for reactive astrocytes, neurons, and activated microglia. To determine which cells are responding to TGFβ after stroke, brain sections were double-labelled with anti-pSmad2, a marker of TGFβ signaling, and markers of neurons, oligodendrocytes, endothelial cells, astrocytes and microglia.TGFβ signaling increased 2 fold after stroke, beginning on day 1 and peaking on day 7. This pattern of increase was preserved in old animals and absolute TGFβ signaling in the brain increased with age. Activated microglia and macrophages were the predominant source of increased TGFβ after stroke and astrocytes and activated microglia and macrophages demonstrated dramatic upregulation of TGFβ signaling after stroke. TGFβ signaling in neurons and oligodendrocytes did not undergo marked changes.We found that TGFβ signaling increases with age and that astrocytes and activated microglia and macrophages are the main cell types that undergo increased TGFβ signaling in response to post-stroke increases in TGFβ. Therefore increased TGFβ after stroke likely regulates glial scar formation and the immune response to stroke.
    Document Type:
    Reference
    Product Catalog Number:
    AB3849
    Product Catalog Name:
    - ()
  • TGFβ1 enhances MAD1 expression and stimulates promoter-bound Pol II phosphorylation: basic functions of C/EBP, SP and SMAD3 transcription factors. 21345218

    The MAD1 protein, a member of the MYC/MAX/MAD network of transcriptional regulators, controls cell proliferation, differentiation and apoptosis. MAD1 functions as a transcriptional repressor, one direct target gene being the tumor suppressor PTEN. Repression of this gene is critical to mediate the anti-apoptotic function of MAD1. Under certain conditions it also antagonizes the functions of the oncoprotein MYC. Previous studies have demonstrated that MAD1 expression is controlled by different cytokines and growth factors. Moreover we have recently demonstrated that the MAD1 promoter is controlled by the cytokine granulocyte colony-stimulating factor (G-CSF) through the activation of STAT3, MAP kinases and C/EBP transcription factors.We observed that in addition to G-CSF, the cytokine transforming growth factor β (TGFβ1) rapidly induced the expression of MAD1 mRNA and protein in promyelocytic tumor cells. Moreover we found that C/EBP and SP transcription factors cooperated in regulating the expression of MAD1. This cooperativity was dependent on the respective binding sites in the proximal promoter, with the CCAAT boxes being bound by C/EBPα/β heterodimers. Both C/EBP and SP transcription factors bound constitutively to DNA without obvious changes in response to TGFβ1. In addition SMAD3 stimulated the MAD1 reporter, cooperated with C/EBPα and was bound to the core promoter region. Thus SMAD3 appears to be a potential link between TGFβ1 signaling and C/EBP regulated promoter activity. Moreover TGFβ1 stimulated the phosphorylation of polymerase II at serine 2 and its progression into the gene body, consistent with enhanced processivity.Our findings suggest that C/EBP and SP factors provide a platform of transcription factors near the core promoter of the MAD1 gene that participate in mediating signal transduction events emanating from different cytokine receptors. SMAD3, a target of TGFβ1 signaling, appears to be functionally relevant. We suggest that a key event induced by TGFβ1 at the MAD1 promoter is the recruitment or activation of cofactors, possibly in complex with C/EBP, SP, and SMAD3 transcriptional regulators, that control polymerase activity.
    Document Type:
    Reference
    Product Catalog Number:
    06-599
    Product Catalog Name:
    Anti-acetyl-Histone H3 Antibody - (Anti-acetyl-Histone H3 Antibody)
  • OTUB1 enhances TGFβ signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. 24071738

    SMAD transcription factors are key intracellular transducers of TGFβ cytokines. SMADs are tightly regulated to ensure balanced cellular responses to TGFβ signals. Ubiquitylation has a key role in regulating SMAD stability and activity. Several E3 ubiquitin ligases that regulate the turnover of SMADs are known; however, proteins that prevent the ubiquitylation or cause deubiquitylation of active SMADs remain undefined. Here we demonstrate that OTUB1 is recruited to the active phospho-SMAD2/3 complex only on TGFβ induction. Further, OTUB1 has a crucial role in TGFβ-mediated gene transcription and cellular migration. OTUB1 inhibits the ubiquitylation of phospho-SMAD2/3 by binding to and inhibiting the E2 ubiquitin-conjugating enzymes independent of its catalytic activity. Consequently, depletion of OTUB1 in cells causes a rapid loss in levels of TGFβ-induced phospho-SMAD2/3, which is rescued by the proteasomal inhibitor bortezomib. Our findings uncover a signal-induced phosphorylation-dependent recruitment of OTUB1 to its target in the TGFβ pathway.
    Document Type:
    Reference
    Product Catalog Number:
    05-1307
  • Inhibition of TGFβ signaling increases direct conversion of fibroblasts to induced cardiomyocytes. 24586958

    Recent studies have been successful at utilizing ectopic expression of transcription factors to generate induced cardiomyocytes (iCMs) from fibroblasts, albeit at a low frequency in vitro. This work investigates the influence of small molecules that have been previously reported to improve differentiation to cardiomyocytes as well as reprogramming to iPSCs in conjunction with ectopic expression of the transcription factors Hand2, Nkx2.5, Gata4, Mef2C, and Tbx5 on the conversion to functional iCMs. We utilized a reporter system in which the calcium indicator GCaMP is driven by the cardiac Troponin T promoter to quantify iCM yield. The TGFβ inhibitor, SB431542 (SB), was identified as a small molecule capable of increasing the conversion of both mouse embryonic fibroblasts and adult cardiac fibroblasts to iCMs up to ∼5 fold. Further characterization revealed that inhibition of TGFβ by SB early in the reprogramming process led to the greatest increase in conversion of fibroblasts to iCMs in a dose-responsive manner. Global transcriptional analysis at Day 3 post-induction of the transcription factors revealed an increased expression of genes associated with the development of cardiac muscle in the presence of SB compared to the vehicle control. Incorporation of SB in the reprogramming process increases the efficiency of iCM generation, one of the major goals necessary to enable the use of iCMs for discovery-based applications and for the clinic.
    Document Type:
    Reference
    Product Catalog Number:
    AB5733
    Product Catalog Name:
    Anti-Vimentin Antibody - (Anti-Vimentin Antibody)