Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

(ENaC)


78 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (35)
  • (32)
  • (4)
Can't Find What You're Looking For?
Contact Customer Service

 
  • NKCC-1 and ENaC are down-regulated in nitrofen-induced hypoplastic lungs with congenital diaphragmatic hernia. 18668250

    Congenital diaphragmatic hernia (CDH) is accompanied by pulmonary hypoplasia and pulmonary hypertension. Fetal lung growth is dependent on the secretion of lung liquid, which normally is absorbed at partus. The ion channel NKCC-1 is involved in this secretory process, but has recently also been reported to be implicated in absorption. CDH patients show a disturbed transition from secretion to absorption. alpha- and beta-ENaC are essential for lung liquid absorption. Common for all transcellular ion transport is the need for Na/K-ATPase as a primary driving force. The aim of the study was first to map the normal pulmonary expression of the above proteins during late gestation and secondly to see if the expression was affected in a CDH rat model. Pregnant Sprague-Dawley rat dams were given nitrofen on gestational day 9.5 to induce CDH. The fetuses were removed on gestational days E18 and E21. In addition, newborn rats were harvested postpartum on day P2. The fetuses were put into one of two groups: hypoplastic lungs without CDH (N-CDH) and hypoplastic lungs with CDH (N+CDH). The pulmonary expression of NKCC-1, alpha-/beta-ENaC and Na/K-ATPase was then analyzed using Western blot. We found that the protein levels of NKCC-1 on gestational days E18 and E21 were significantly lower among fetuses with N+CDH as well as N-CDH compared to controls. The expression of beta-ENaC was also significantly down-regulated in both the groups on E18 and E21. The protein levels of alpha-ENaC and Na/K-ATPase were not found to be significantly decreased, but both showed a tendency towards down-regulation. The marked down-regulation of NKCC-1 in fetal hypoplastic lungs with CDH indicates a possibly decreased lung liquid production. This may be one of the mechanisms behind the disturbed pulmonary development in CDH. We also show that beta-ENaC is down-regulated. Down-regulation of beta-ENaC may result in abnormal lung liquid absorption, which could be one of the mechanisms behind the respiratory distress seen in CDH patients postpartum.
    Document Type:
    Reference
    Product Catalog Number:
    05-369
    Product Catalog Name:
    Anti-Na+/K+ ATPase α-1 Antibody, clone C464.6
  • Estrogen increases ENaC activity via PKCδ signaling in renal cortical collecting duct cells. 24872356

    The most active estrogen, 17β-estradiol (E2), has previously been shown to stimulate a female sex-specific antisecretory response in the intestine. This effect is thought to contribute to the increase in whole body extracellular fluid (ECF) volume which occurs in high estrogen states, such as in the implantation window during estrous cycle. The increased ECF volume may be short-circuited by a renal compensation unless estrogen exerts a proabsorptive effect in the nephron. Thus, the effect of E2 on ENaC in kidney cortical collecting duct (CCD) cells is of interest to understand estrogen regulation of ECF volume. Previous studies showed a rapid stimulatory effect of estrogen on ENaC in bronchial epithelium. In this study we examined if such a rapid effect on Na(+) absorption could occur in the kidney. Experiments were carried out on murine M1-CCD cell cultures. E2 (25 nmol/L) treatment caused a rapid-onset (less than 15 min) and sustained increase in the amiloride-sensitive Na(+) current (INa) in CCD monolayers mounted in Ussing chambers (control, 1.9 ± 0.2 μA/cm(2); E2, 4.7 ± 0.3 μA/cm(2); n = 43, P less than 0.001), without affecting the ouabain-sensitive Na(+)/K(+) pump current. The INa response to E2 was inhibited by PKCδ activity antagonism with rottlerin (5 μmol/L), inhibition of matrix metalloproteinases activity with GM6001 (1 μmol/L), inhibition of EGFR activity with AG1478 (10 μmol/L), inhibition of PLC activity with U-73122 (10 μmol/L), and inhibition of estrogen receptors with the general ER antagonist ICI-182780 (100 nmol/L). The estrogen activation of INa could be mimicked by the ERα agonist PPT (1 nmol/L). The nuclear excluded estrogen dendrimer conjugate (EDC) induced similar stimulatory effects on INa comparable to free E2. The end target for E2 stimulation of PKCδ was shown to be an increased abundance of the γ-ENaC subunit in the apical plasma membrane of CCD cells. We have demonstrated a novel rapid "nongenomic" function of estrogen to stimulate ENaC via ERα-EGFR transactivation in kidney CCD cells. We propose that the salt-retaining effect of estrogen in the kidney together with its antisecretory action in the intestine are the molecular mechanisms causing the expanded ECF volume in high-estrogen states.
    Document Type:
    Reference
    Product Catalog Number:
    AB3530P
    Product Catalog Name:
    Anti-Epithelial Sodium Channel-α Antibody
  • Transport and localization of the DEG/ENaC ion channel BNaC1alpha to peripheral mechanosensory terminals of dorsal root ganglia neurons. 11306621

    Mammalian brain sodium channel (BNaC, also known as BNC/ASIC) proteins form acid-sensitive and amiloride-blockable sodium channels that are related to putative mechanosensory channels. Certain BNaC isoforms are expressed exclusively in dorsal root ganglia (DRG) and have been proposed to form the ion channels mediating tissue acidosis-induced pain. With antibody labeling, we find that the BNaC1alpha isoform is expressed by most large DRG neurons (low-threshold mechanosensors not involved in acid-induced nociception) and few small nociceptor neurons (which include high-threshold mechanoreceptors). BNaC1alpha is transported from DRG cell bodies to sensory terminals in the periphery, but not to the spinal cord, and is located specifically at specialized cutaneous mechanosensory terminals, including Meissner, Merkel, penicillate, reticular, lanceolate, and hair follicle palisades as well as some intraepidermal and free myelinated nerve endings. Accordingly, BNaC1alpha channels might participate in the transduction of touch and painful mechanical stimuli.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1527
    Product Catalog Name:
    Anti-Peripherin Antibody, clone 8G2
  • Increased apical targeting of renal ENaC subunits and decreased expression of 11betaHSD2 in HgCl2-induced nephrotic syndrome in rats. 16189294

    Nephrotic syndrome is often accompanied by sodium retention and generalized edema. We hypothesize that dysregulation of the epithelial sodium channel (ENaC) and/or of sodium (co)transporters may be responsible for the increased sodium retention associated with HgCl(2)-induced nephropathy. In addition, we examined the hypothesis that the expression of type 2 11beta-hydroxysteroid dehydrogenase (11betaHSD2) is reduced, contributing to the enhanced mineralocorticoid activity. Membranous nephropathy was induced in Brown Norway rats by repeated injections of HgCl(2) (1 mg/kg sc), whereas the control group received only vehicle. After 13 days of treatment, the abundance of ENaC subunits, sodium (co)transporters, and 11betaHSD2 in the kidney was examined by immunoblotting and immunohistochemistry. HgCl(2) treatment induced marked proteinuria, hypoalbuminemia, decreased urinary sodium excretion, and ascites. The protein abundance of alpha-ENaC was increased in the cortex/outer stripe of outer medulla (OSOM) and inner stripe of the outer medulla (ISOM). The protein abundances of beta-ENaC and gamma-ENaC were decreased in the cortex/OSOM while increased in the ISOM. Immunoperoxidase microscopy demonstrated increased targeting of ENaC subunits to the apical plasma membrane in the distal convoluted tubule, connecting tubule, and cortical and medullary collecting duct segments. Moreover, 11betaHSD2 abundance was decreased in cortex/OSOM and ISOM. The protein abundances of type 3 Na/H exchanger (NHE3), Na-K-2Cl cotransporter (NKCC2), and thiazide-sensitive Na-Cl cotransporter (NCC) were decreased. Moreover, the abundance of the alpha-1 subunit of the Na-K-ATPase was decreased in the cortex/OSOM and ISOM but remained unchanged in the inner medulla. These results suggest that increased apical targeting of ENaC subunits combined with diminished abundance of 11betaHSD2 may contribute to sodium retention associated with HgCl(2)-induced nephrotic syndrome. The decreased abundance of NHE3, NKCC2, NCC, and Na-K-ATPase may play a compensatory role in promoting sodium excretion.
    Document Type:
    Reference
    Product Catalog Number:
    AB1296
  • Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. 16303859

    Hyperinsulinemia is associated with hypertension. Dysregulation of renal distal tubule sodium reabsorption may play a role. We evaluated the regulation of the epithelial sodium channel (ENaC) and the thiazide-sensitive Na-Cl cotransporter (NCC) during chronic hyperinsulinemia in rats and correlated these changes to blood pressure as determined by radiotelemetry. Male Sprague-Dawley rats ( approximately 270 g) underwent one of the following three treatments for 4 wk (n = 6/group): 1) control; 2) insulin-infused plus 20% dextrose in drinking water; or 3) glucose water-drinking (20% dextrose in water). Mean arterial pressures were increased by insulin and glucose (mmHg at 3 wk): 98 +/- 1 (control), 107 +/- 2 (insulin), and 109 +/- 3 (glucose), P 0.01. Insulin (but not glucose) increased natriuretic response to benzamil (ENaC inhibitor) and hydrochlorothiazide (NCC inhibitor) on average by 125 and 60%, respectively, relative to control rats, suggesting increased activity of these reabsorptive pathways. Neither insulin nor glucose affected the renal protein abundances of NCC or the ENaC subunits (alpha, beta, and gamma) in kidney cortex, outer medulla, or inner medulla in a major way, as determined by immunoblotting. However, insulin and to some extent glucose increased apical localization of these subunits in cortical collecting duct principal cells, as determined by immunoperoxidase labeling. In addition, insulin decreased cortical with no lysine kinase (WNK4) abundance (by 16% relative to control), which may have increased NCC activity. Overall, insulin infusion increased blood pressure, and NCC and ENaC activity in rats. Increased apical targeting of ENaC and decreased WNK4 expression may be involved.
    Document Type:
    Reference
    Product Catalog Number:
    RI-13K
    Product Catalog Name:
    Rat Insulin RIA