Skip to Content
Merck
  • Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration.

Hepatogenesis of murine induced pluripotent stem cells in 3D micro-cavitary hydrogel system for liver regeneration.

Biomaterials (2013-06-13)
Ting Ting Lau, Li Wen Ho, Dong-An Wang
ABSTRACT

The discovery of induced pluripotent stem cell (iPSC) technology has raised hopes in circumventing the current limitations in cell-based therapies where autologous stem cells could be generated from terminally differentiated somatic cells. Given the relatively short history of iPSC research, most of the studies are scientific exploratory in nature and hence have minimal practical usage. In this study, we aimed to combine existing knowledge on iPSC differentiation with three-dimensional (3D) scaffold platform so as to fabricate implantable constructs for liver regeneration. A micro-cavitary hydrogel (MCG) platform was employed as a continuous system for both colonies and/or EBs formation and differentiation. The advantage of MCG system is that it further enhances nutrient exchange and also permits greater living space for the encapsulated pluripotent stem cells to rapidly grow into colonies and/or EBs compared to typical non-MCG system. Murine iPSCs and embryonic stem cells (ESCs) were encapsulated respectively in alginate MCG system and after culturing for 10 days; colonies/EBs were formed spontaneously. Differentiation conditions were then introduced to direct the cells toward endodermal lineage and subsequently hepatic lineage and maturation. Up-regulation of endoderm markers and hepatic markers was observed in both iPSCs and ESCs suggesting that iPSC as effectively as the ESCs in MCG system. Urea and albumin production were significantly higher compared to monolayer culture, demonstrating the beneficial effects of MCG system. The results from this work provide foundation in understanding of iPSC differentiation in 3D engineered environment and aid in future biomedical research of iPSC technology.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 2000, contains ~1000 ppm MeHQ as stabilizer
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 750, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor