Skip to Content
Merck
  • Platelet Derived Growth Factor Has a Role in Pressure Induced Bladder Smooth Muscle Cell Hyperplasia and Acts in a Paracrine Way.

Platelet Derived Growth Factor Has a Role in Pressure Induced Bladder Smooth Muscle Cell Hyperplasia and Acts in a Paracrine Way.

The Journal of urology (2015-06-10)
Laura Preis, Annika Herlemann, Rosalyn M Adam, Hans-Georg Dietz, Roland Kappler, Maximilian Stehr
ABSTRACT

Bladder outlet obstruction is a finding in many urological disorders, leading to bladder wall hyperplasia. We investigated platelet derived growth factor and its receptor in human bladder smooth muscle cells and urothelial cells exposed to hydrostatic pressure or PDGF in vitro. Bladder smooth muscle cells and urothelial cells were exposed to elevated hydrostatic pressure for 1 hour. The expression of PDGF and PDGFR was evaluated using reverse transcriptase-polymerase chain reaction and Western blot analysis. Pressure or PDGF induced proliferation of bladder smooth muscle cells with or without pretreatment with lovastatin or imatinib was measured by enzyme-linked immunosorbent assay. PDGFRα was knocked down with siRNA. After hydrostatic pressure bladder smooth muscle cells showed increased PDGFRα and β expression. PDGF was not expressed in bladder smooth muscle cells. Urothelial cells showed no expression of PDGFR but PDGF expression was noted. Western blot analysis of bladder smooth muscle cells revealed a pressure induced increase in PDGFR in the membrane fraction. Phosphorylation of PDGFR occurred with pressure induction. Bladder smooth muscle cell proliferation was increased in pressure and PDGF mediated fashion. Pretreatment with lovastatin or imatinib prevented proliferation. There was no cell proliferation after PDGFRα knockdown. Increased expression and phosphorylation of PDGFR in bladder smooth muscle cells after hydrostatic pressure suggests a pivotal role of the PDGF pathway in pressure induced hyperplasia of bladder smooth muscle cells. PDGF expressed in urothelial cells may act in a paracrine way. Cholesterol depletion, inhibition of receptor tyrosine kinase activity and knockdown of PDGFRα in bladder smooth muscle cells prevent pressure and PDGF mediated cell proliferation. Targeting PDGFR seems a promising way to influence pressure induced bladder wall hyperplasia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
hEGF, EGF, recombinant, expressed in E. coli, lyophilized powder, suitable for cell culture
Sigma-Aldrich
EGF from mouse, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
EGF from mouse, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC)
Sigma-Aldrich
EGF human, Animal-component free, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
DL-Tyrosine, 99%
Sigma-Aldrich
Ethylenediaminetetraacetic acid solution, 0.02% in DPBS (0.5 mM), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
EGF from rat, recombinant, expressed in E. coli, ≥98% (SDS-PAGE), ≥98% (HPLC), suitable for cell culture
Sigma-Aldrich
Epidermal Growth Factor, human, animal component free, EGF, recombinant, expressed in Escherichia coli, >97% (SDS-PAGE)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, purified grade, ≥98.5%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, 99.995% trace metals basis
Sigma-Aldrich
Ethylenediaminetetraacetic acid, BioUltra, anhydrous, ≥99% (titration)
Sigma-Aldrich
Ethylenediaminetetraacetic acid, ACS reagent, 99.4-100.6%, powder
Sigma-Aldrich
Ethylenediaminetetraacetic acid, anhydrous, crystalline, BioReagent, suitable for cell culture