Saltar al contenido
Merck

Disrupting VEGF-A paracrine and autocrine loops by targeting SHP-1 suppresses triple negative breast cancer metastasis.

Scientific reports (2016-07-02)
Jung-Chen Su, Ai-Chung Mar, Szu-Hsien Wu, Wei-Tien Tai, Pei-Yi Chu, Chia-Yun Wu, Ling-Ming Tseng, Te-Chang Lee, Kuen-Feng Chen, Chun-Yu Liu, Hao-Chieh Chiu, Chung-Wai Shiau
RESUMEN

Patients with triple-negative breast cancer (TNBC) had an increased likelihood of distant recurrence and death, as compared with those with non-TNBC subtype. Regorafenib is a multi-receptor tyrosine kinase (RTK) inhibitor targeting oncogenesis and has been approved for metastatic colorectal cancer and advanced gastrointestinal stromal tumor. Recent studies suggest regorafenib acts as a SHP-1 phosphatase agonist. Here, we investigated the potential of regorafenib to suppress metastasis of TNBC cells through targeting SHP-1/p-STAT3/VEGF-A axis. We found a significant correlation between cancer cell migration and SHP-1/p-STAT3/VEGF-A expression in human TNBC cells. Clinically, high VEGF-A expression is associated with worse disease-free and distant metastasis-free survival. Regorafenib induced significant anti-migratory effects, in association with downregulation of p-STAT3 and VEGF-A. To exclude the role of RTK inhibition in regorafenib-induced anti-metastasis, we synthesized a regorafenib derivative, SC-78, that had minimal effect on VEGFR2 and PDGFR kinase inhibition, while having more potent effects on SHP-1 activation. SC-78 demonstrated superior in vitro and in vivo anti-migration to regorafenib. Furthermore, VEGF-A dependent autocrine/paracrine loops were disrupted by regorafenib and SC-78. This study implies that SHP-1/p-STAT3/VEGF-A axis is a potential therapeutic target for metastatic TNBC, and the more potent SC-78 may be a promising lead for suppressing metastasis of TNBC.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
EZ-Zyme Chromatin Prep Kit, Contains proprietary reagents optimized for the enzymatic shearing of chromatin from mammalian cells at higher resolution than sonication for use in chromatin immunoprecipitation (ChIP) assays.