Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

western blotting


728 Results Részletes keresés  
Showing
Termékek (0)
Dokumentumok (728)
Oldalak (0)

Szűkítse a keresést Keresésének finomításához használja az alábbi szűrőket

Document Type

  • (672)
  • (30)
  • (12)
  • (6)
  • (3)
  • Mutassa a továbbiakat
Nem találja, amit keres?
Lépjen kapcsolatba
a vevőszolgálattal

 
  • Differential gene expression in eyecup and retina of a mouse model of Stargardt-like macular dystrophy (STGD3). 22199241

    To investigate differentially expressed genes in eyecup and retina of the ELOVL4 transgenic mouse, a model of Stargardt-like macular dystrophy (STGD3).We examined gene and protein expression in known pathways relevant to retinal degeneration using PCR arrays, Western blotting, and immunohistochemistry. Investigations were performed on ELOVL4 transgenic mice at 9 months, when 50% of rod (but no cone) photoreceptors had degenerated. Age-matched wild-type littermates served as controls.Significant expression level changes were found in only 17 of the 252 genes examined. Nine were upregulated (Fgf2, Fgfr1, Ntf5, Cbln1, Ngfr, Ntrk1, Trp53, Tlr6, and Herpud1), and eight were downregulated (Ccl22, Ccr3, Il18rap, Nf1, Ccl11, Atf6β, Rpn1, and Serp1). Overexpression of FGF2 was detected at 1 month, before rod loss onset, and was maintained at high levels until cone loss (18 months). By 9 months, FGF2 overexpression was seen in photoreceptor cell bodies. Increased glial fibrillary acidic protein (GFAP) expression due to glial cell reactivity followed the same time course. Levels of NGFR/p75NTR remained invariant. Although present in rod outer segments at 1 month, the macrophage chemoattracting chemokine CCL22 became undetectable by 9 months, a likely consequence of progressive rod outer segment truncation.At a mid-degeneration stage, major changes in gene expression in the ELOVL4 transgenic mouse retina included upregulation of Fgf2 and Fgfr1 and downregulation of Ccl22. Modulation of FGF2 occurred very early, concomitant with an increase in GFAP expression. Future studies will address which factors upstream of Fgf2 could provide potential therapeutic targets to slow photoreceptor degeneration in STGD3.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    Multiple
    Katalógusszám:
    Multiple
  • Innervation of the rat uterus at estrus: a study in full-thickness, immunoperoxidase-stained whole-mount preparations. 21246547

    The innervation of the nonpregnant rat uterus has been studied in histological sections, which contain only small samples of nerves and are unlikely to afford a complete picture of uterine innervation. Here we used whole-mount preparations of entire full-thickness uterine horns from nonpregnant rats in estrus to visualize autonomic or sensory nerves with peroxidase immunohistochemistry. Immunoreactivity was studied for tyrosine hydroxylase (TH)-labeled sympathetic nerves; vesicular acetylcholine transporter (VAChT), parasympathetic nerves; and substance P (SP) and calcitonin gene-related peptide (CGRP), sensory nerves. Neuropeptide Y (NPY) and nitric oxide synthase (NOS) identified more than one of these functionally distinct nerve types. Axons of all neurochemical classes entered the uterus at the mesometrium and innervated the uterine smooth muscle. The linea uteri, a dense band of longitudinal muscle opposite the mesometrium, contained more TH-, NPY-, CGRP-, and VAChT-immunoreactive axons than the remaining smooth muscle. Axons immunoreactive for NPY, SP, NOS, and VAChT formed a plexus near the circular muscle-endometrium interface. Rare TH- and NPY-immunoreactive axons and occasional CGRP-immunoreactive axons occurred close to uterine glands. Blood vessels had dense perivascular plexuses of TH- and NPY-containing axons and less dense NOS-, SP-, CGRP-, and VAChT-positive plexuses. The circular muscle plexus and glands were absent opposite the mesometrium. Uterine arterioles formed an interconnected network throughout the uterus. This article provides the first comprehensive description of the autonomic and sensory innervation of the nonpregnant rat uterus and will be a foundation for future studies on changes in uterine innervation caused by normal physiological or pathophysiological challenges.Copyright © 2010 Wiley-Liss, Inc.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    AB1588
  • Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc. 23277454

    Poly(ADP-ribose) polymerase 1 (Parp1) catalyzes poly(ADP-ribosylation) (PARylation) and induces replication networks involved in multiple nuclear events. Using mass spectrometry and Western blotting, Parp1 and PARylation activity were intensively detected in induced pluripotent stem cells (iPSCs) and embryonic stem cells, but they were lower in mouse embryonic fibroblasts (MEFs) and differentiated cells. We show that knockdown of Parp1 and pharmacological inhibition of PARylation both reduced the efficiency of iPSC generation induced by Oct4/Sox2/Klf4/c-Myc. Furthermore, Parp1 is able to replace Klf4 or c-Myc to enhance the efficiency of iPSC generation. In addition, mouse iPSCs generated from Oct4/Sox2/Parp1-overexpressing MEFs formed chimeric offspring. Notably, the endogenous Parp1 and PARylation activity was enhanced by overexpression of c-Myc and repressed by c-Myc knockdown. A chromatin immunoprecipitation assay revealed a direct interaction of c-Myc with the Parp1 promoter. PAR-resin pulldown, followed by proteomic analysis, demonstrated high levels of PARylated Chd1L, DNA ligase III, SSrp1, Xrcc-6/Ku70, and Parp2 in pluripotent cells, which decreased during the differentiation process. These data show that the activation of Parp1, partly regulated by endogenous c-Myc, effectively promotes iPSC production and helps to maintain a pluripotent state by posttranslationally modulating protein PARylation.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    17-371
    Katalógusszám:
    EZ-ChIP™
  • A small-molecule inhibitor targeting the mitotic spindle checkpoint impairs the growth of uterine leiomyosarcoma. 22535157

    Uterine leiomyosarcoma (ULMS) is a poorly understood cancer with few effective treatments. This study explores the molecular events involved in ULMS with the goal of developing novel therapeutic strategies.Genome-wide transcriptional profiling, Western blotting, and real-time PCR were used to compare specimens of myometrium, leiomyoma, and leiomyosarcoma. Aurora A kinase was targeted in cell lines derived from metastatic ULMS using siRNA or MK-5108, a highly specific small-molecule inhibitor. An orthotopic model was used to evaluate the ability of MK-5108 to inhibit ULMS growth in vivo.We found that 26 of 50 gene products most overexpressed in ULMS regulate mitotic centrosome and spindle functions. These include UBE2C, Aurora A and B kinase, TPX2, and Polo-like kinase 1 (PLK1). Targeting Aurora A inhibited proliferation and induced apoptosis in LEIO285, LEIO505, and SK-LMS1, regardless of whether siRNA or MK-5108 was used. In vitro, MK-5108 did not consistently synergize with gemcitabine or docetaxel. Gavage of an orthotopic ULMS model with MK-5108 at 30 or 60 mg/kg decreased the number and size of tumor implants compared with sham-fed controls. Oral MK-5108 also decreased the rate of proliferation, increased intratumoral apoptosis, and increased expression of phospho-histone H3 in ULMS xenografts.Our results show that dysregulated centrosome function and spindle assembly are a robust feature of ULMS that can be targeted to slow its growth both in vitro and in vivo. These observations identify novel directions that can be potentially used to improve clinical outcomes for this disease.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    Multiple
    Katalógusszám:
    Multiple
  • Administration of dexamethasone to neonatal rats induces hypomyelination and changes in the morphology of oligodendrocyte precursors. 23561937

    To examine whether hypomyelination in neonatal rats might be related to apoptosis of oligodendrocyte progenitors, we administered dexamethasone (0.5 mg/kg SC) to neonatal rats on postnatal (P) days 1 through 5. Immunofluorescent staining and Western blotting for myelin basic protein (MBP) were performed on P14. Morphologic changes associated with apoptotic death of oligodendrocyte progenitors were assessed by using immunofluorescent staining on P5 of surface markers present at different developmental stages of oligodendrocyte progenitors (O4 and O1) and by double-staining with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick end-labeling (TUNEL) and O4 or O1. Administration of dexamethasone to neonatal rats reduced the expression of MBP in the white matter by P14. In addition, dexamethasone reduced the expression of O4-positive cells, presumably preoligodendrocytes, in the corpus callosum and induced degenerative changes, such as cytoplasmic condensation and fragmented, tortuous processes, in oligodendrocyte progenitors, and increased the number of TUNEL-positive pyknotic nuclei of oligodendrocyte progenitors. These findings suggest that the dexamethasone-induced decreased expression of MBP in the cerebral hemispheres of the neonatal rats is due to apoptotic degeneration of oligodendrocyte progenitors. Administration of dexamethasone during the critical period of brain development may increase the risk of apoptosis in oligodendrocyte progenitors, subsequently resulting in hypomyelination.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    Multiple
    Katalógusszám:
    Multiple
  • The level and distribution of the GABA(B)R1 and GABA(B)R2 receptor subunits in the rat's inferior colliculus. 23189044

    The type B γ-aminobutyric acid receptor (GABA(B) receptor) is an important neurotransmitter receptor in the midbrain auditory structure, the inferior colliculus (IC). A functional GABA(B) receptor is a heterodimer consisting of two subunits, GABA(B)R1 and GABA(B)R2. Western blotting and immunohistochemical experiments were conducted to examine the expression of the two subunits over the IC including its central nucleus, dorsal cortex, and external cortex (ICc, ICd, and ICx). Results revealed that the two subunits existed in both cell bodies and the neuropil throughout the IC. The two subunits had similar regional distributions over the IC. The combined level of cell body and neuropil labeling was higher in the ICd than the other two subdivisions. Labeling in the ICc and ICx was stronger in the dorsal than the ventral regions. In spite of regional differences, no defined boundaries were formed between different areas. For both subunits, the regional distribution of immunoreactivity in the neuropil was parallel to that of combined immunoreactivity in the neuropil and cell bodies. The density of labeled cell bodies tended to be higher but sizes of cell bodies tended to be smaller in the ICd than in the other subdivisions. No systematic regional changes were found in the level of cell body immunoreactivity, except that GABA(B)R2-immunoreactive cell bodies in the ICd had slightly higher optic density (OD) than in other regions. Elongated cell bodies existed throughout the IC. Many labeled cell bodies along the outline of the IC were oriented in parallel to the outline. No strong tendency of orientation was found in labeled cell bodies in ICc. Regional distributions of the subunits in ICc correlated well with inputs to this subdivision. Our finding regarding the contrast in the level of neuropil immunoreactivity among different subdivisions is consistent with the fact that the GABA(B) receptor has different pre- and postsynaptic functions in different IC regions.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    Multiple
    Katalógusszám:
    Multiple
  • Direct repression of MYB by ZEB1 suppresses proliferation and epithelial gene expression during epithelial-to-mesenchymal transition of breast cancer cells. 24283570

    Epithelial-to-mesenchymal transition (EMT) promotes cell migration and is important in metastasis. Cellular proliferation is often downregulated during EMT, and the reverse transition (MET) in metastases appears to be required for restoration of proliferation in secondary tumors. We studied the interplay between EMT and proliferation control by MYB in breast cancer cells.MYB, ZEB1, and CDH1 expression levels were manipulated by lentiviral small-hairpin RNA (shRNA)-mediated knockdown/overexpression, and verified with Western blotting, immunocytochemistry, and qRT-PCR. Proliferation was assessed with bromodeoxyuridine pulse labeling and flow cytometry, and sulforhodamine B assays. EMT was induced with epidermal growth factor for 9 days or by exposure to hypoxia (1% oxygen) for up to 5 days, and assessed with qRT-PCR, cell morphology, and colony morphology. Protein expression in human breast cancers was assessed with immunohistochemistry. ZEB1-MYB promoter binding and repression were determined with Chromatin Immunoprecipitation Assay and a luciferase reporter assay, respectively. Student paired t tests, Mann-Whitney, and repeated measures two-way ANOVA tests determined statistical significance (P less than 0.05).Parental PMC42-ET cells displayed higher expression of ZEB1 and lower expression of MYB than did the PMC42-LA epithelial variant. Knockdown of ZEB1 in PMC42-ET and MDA-MB-231 cells caused increased expression of MYB and a transition to a more epithelial phenotype, which in PMC42-ET cells was coupled with increased proliferation. Indeed, we observed an inverse relation between MYB and ZEB1 expression in two in vitro EMT cell models, in matched human breast tumors and lymph node metastases, and in human breast cancer cell lines. Knockdown of MYB in PMC42-LA cells (MYBsh-LA) led to morphologic changes and protein expression consistent with an EMT. ZEB1 expression was raised in MYBsh-LA cells and significantly repressed in MYB-overexpressing MDA-MB-231 cells, which also showed reduced random migration and a shift from mesenchymal to epithelial colony morphology in two dimensional monolayer cultures. Finally, we detected binding of ZEB1 to MYB promoter in PMC42-ET cells, and ZEB1 overexpression repressed MYB promoter activity.This work identifies ZEB1 as a transcriptional repressor of MYB and suggests a reciprocal MYB-ZEB1 repressive relation, providing a mechanism through which proliferation and the epithelial phenotype may be coordinately modulated in breast cancer cells.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    05-175
    Katalógusszám:
    Anti-Myb Antibody, clone 1-1
  • Pancreatic islets and insulinoma cells express a novel isoform of group VIA phospholipase A2 (iPLA2 beta) that participates in glucose-stimulated insulin secretion and is ... 14636061

    Many cells express a group VIA 84 kDa phospholipase A(2) (iPLA(2)beta) that is sensitive to inhibition by a bromoenol lactone (BEL) suicide substrate. Inhibition of iPLA(2)beta in pancreatic islets and insulinoma cells suppresses, and overexpression of iPLA(2)beta in INS-1 insulinoma cells amplifies, glucose-stimulated insulin secretion, suggesting that iPLA(2)beta participates in secretion. Western blotting analyses reveal that glucose-responsive 832/13 INS-1 cells express essentially no 84 kDa iPLA(2)beta-immunoreactive protein but predominantly express a previously unrecognized immunoreactive iPLA(2)beta protein in the 70 kDa region that is not generated by a mechanism of alternate splicing of the iPLA(2)beta transcript. To determine if the 70 kDa-immunoreactive protein is a short isoform of iPLA(2)beta, protein from the 70 kDa region was digested with trypsin and analyzed by mass spectrometry. Such analyses reveal several peptides with masses and amino acid sequences that exactly match iPLA(2)beta tryptic peptides. Peptide sequences identified in the 70 kDa tryptic digest include iPLA(2)beta residues 7-53, suggesting that the N-terminus is preserved. We also report here that the 832/13 INS-1 cells express iPLA(2)beta catalytic activity and that BEL inhibits secretagogue-stimulated insulin secretion from these cells but not the incorporation of arachidonic acid into membrane PC pools of these cells. These observations suggest that the catalytic iPLA(2)beta activity expressed in 832/13 INS-1 cells is attributable to a short isoform of iPLA(2)beta and that this isoform participates in insulin secretory but not in membrane phospholipid remodeling pathways. Further, the finding that pancreatic islets also express predominantly a 70 kDa iPLA(2)beta-immunoreactive protein suggests that a signal transduction role of iPLA(2)beta in the native beta-cell might be attributable to a 70 kDa isoform of iPLA(2)beta.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    07-169-I
    Katalógusszám:
    Anti-iPLA2 Antibody
  • NKCC1 does not accumulate chloride in developing retinal neurons. 17493914

    GABA excites immature neurons due to their relatively high intracellular chloride concentration. This initial high concentration is commonly attributed to the ubiquitous chloride cotransporter NKCC1, which uses a sodium gradient to accumulate chloride. Here we tested this hypothesis in immature retinal amacrine and ganglion cells. Western blotting detected NKCC1 at birth and its expression first increased, then decreased to the adult level. Immunocytochemistry confirmed this early expression of NKCC1 and localized it to all nuclear layers. In the ganglion cell layer, staining peaked at P4 and then decreased with age, becoming undetectable in adult. In comparison, KCC2, the chloride extruder, steadily increased with age localizing primarily to the synaptic layers. For functional tests, we used calcium imaging with fura-2 and chloride imaging with 6-methoxy-N-ethylquinolinium iodide. If NKCC1 accumulates chloride in ganglion and amacrine cells, deleting or blocking it should abolish the GABA-evoked calcium rise. However, at P0-5 GABA consistently evoked a calcium rise that was not abolished in the NKCC1-null retinas, nor by applying high concentrations of bumetanide (NKCC blocker) for long periods. Furthermore, intracellular chloride concentration in amacrine and ganglion cells of the NKCC1-null retinas was approximately 30 mM, same as in wild type at this age. This concentration was not lowered by applying bumetanide or by decreasing extracellular sodium concentration. Costaining for NKCC1 and cellular markers suggested that at P3, NKCC1 is restricted to Müller cells. We conclude that NKCC1 does not serve to accumulate chloride in immature retinal neurons, but it may enable Müller cells to buffer extracellular chloride.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    AB175
    Katalógusszám:
    Anti-GABA Antibody
  • Growth arrest DNA damage-inducible gene 45 gamma expression as a prognostic and predictive biomarker in hepatocellular carcinoma. 26172295

    Growth arrest DNA damage-inducible gene 45 (GADD45) family proteins play a crucial role in regulating cellular stress responses and apoptosis. The present study explored the prognostic and predictive role of GADD45γ in hepatocellular carcinoma (HCC) treatment. GADD45γ expression in HCC cells was examined using quantitative reverse transcription-PCR (qRT-PCR) and Western blotting. The control of GADD45γ transcription was examined using a luciferase reporter assay and chromatin immunoprecipitation. The in vivo induction of GADD45γ was performed using adenoviral transfer. The expression of GADD45γ in HCC tumor tissues from patients who had undergone curative resection was measured using qRT-PCR. Sorafenib induced expression of GADD45γ mRNA and protein, independent of its RAF kinase inhibitor activity. GADD45γ induction was more prominent in sorafenib-sensitive HCC cells (Huh-7 and HepG2, IC50 6-7 μM) than in sorafenib-resistant HCC cells (Hep3B, Huh-7R, and HepG2R, IC50 12-15 μM). Overexpression of GADD45γ reversed sorafenib resistance in vitro and in vivo, whereas GADD45γ expression knockdown by using siRNA partially abrogated the proapoptotic effects of sorafenib on sorafenib-sensitive cells. Overexpression of survivin in HCC cells abolished the antitumor enhancement between GADD45γ overexpression and sorafenib treatment, suggesting that survivin is a crucial mediator of antitumor effects of GADD45γ. GADD45γ expression decreased in tumors from patients with HCC who had undergone curative surgery, and low GADD45γ expression was an independent prognostic factor for poor survival, in addition to old age and vascular invasion. The preceding data indicate that GADD45γ suppression is a poor prognostic factor in patients with HCC and may help predict sorafenib efficacy in HCC.
    Dokumentumtípus:
    Reference
    Katalógusszám:
    17-371
    Katalógusszám:
    EZ-ChIP™