Millipore Sigma Vibrant Logo
 

Nicotinic


212 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (108)
  • (66)
  • (2)
  • (1)

Application Type

  • (1)

Field of Activity

  • (1)

Sample

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Alpha7 nicotinic acetylcholine receptor expression by vascular smooth muscle cells facilitates the deposition of Abeta peptides and promotes cerebrovascular amyloid angio ... 18708033

    Deposition of beta-amyloid (Abeta) peptides in the walls of brain blood vessels, cerebral amyloid angiopathy (CAA), is common in patients with Alzheimer's disease (AD). Previous studies have demonstrated Abeta peptide deposition among vascular smooth muscle cells (VSMCs), but the source of the Abeta and basis for its selective deposition in VSMCs are unknown. In the present study, we examined the deposition patterns of Abeta peptides, Abeta40 and Abeta42, within the cerebrovasculature of AD and control patients using single- and double-label immunohistochemistry. Abeta40 and Abeta42 were abundant in VSMCs, especially in leptomeningeal arteries and their initial cortical branches; in later-stage AD brains this pattern extended into the microvasculature. Abeta peptide deposition was linked to loss of VSMC viability. Perivascular leak clouds of Abeta-positive material were associated primarily with arterioles. By contrast, control brains possessed far fewer Abeta42- and Abeta40-immunopositive blood vessels, with perivascular leak clouds of Abeta-immunopositive material rarely observed. We also demonstrate that VSMCs in brain blood vessels express the alpha7 nicotinic acetylcholine receptor (alpha7nAChR), which has high binding affinity for Abeta peptides, especially Abeta42. These results suggest that the blood and blood-brain barrier permeability provide a major source of the Abeta peptides that gradually deposit in brain VSMCs, and the presence and abundance of the alpha7nAChR on VSMCs may facilitate the selective accumulation of Abeta peptides in these cells.
    Document Type:
    Reference
    Product Catalog Number:
    AB5078P
    Product Catalog Name:
    Anti-Beta-Amyloid 1-42 Antibody
  • α7 nicotinic acetylcholine receptor agonist PNU-282987 attenuates early brain injury in a perforation model of subarachnoid hemorrhage in rats. 21960575

    Early brain injury is an important pathological process after subarachnoid hemorrhage (SAH). The goal of this study was to evaluate whether the α7 nicotinic acetylcholine receptor (α7nAChR) agonist PNU-282987 attenuates early brain injury after SAH and whether α7nAChR stimulation is associated with down-regulation of caspase activity via phosphatidylinositol 3-kinase-Akt signaling.The perforation model of SAH was performed, and neurological score, body weight loss, and brain water content were evaluated 24 and 72 hours after surgery. Western blot and immunohistochemistry were used for quantification and localization of phosphorylated Akt and cleaved caspase 3. Neuronal cell death was quantified with TUNEL staining. α7nAChR antagonist methylcaconitine and phosphatidylinositol 3-kinase inhibitor wortmannin were used to manipulate the proposed pathway, and results were quantified with Western blot.PNU-282987 improved neurological deficits both 24 and 72 hours after surgery and reduced brain water content in left hemispheres 24 hours after surgery. PNU-282987 significantly increased phosphorylated Akt levels and significantly decreased cleaved caspase 3 levels in ipsilateral hemispheres after SAH. Methylcaconitine and wortmannin reversed effects of treatment. Phosphorylated Akt and cleaved caspase 3 were colocalized to neurons in the ipsilateral basal cortex. Phosphorylated Akt was mainly localized in TUNEL-negative cells. PNU-282987 significantly reduced neuronal cell death in the ipsilateral basal cortex.α7nAChR stimulation decreased neuronal cell death and brain edema and improved neurological status in a rat perforation model of SAH. α7nAChR stimulation is associated with increasing phosphorylation of Akt and decreasing cleaved caspase 3 levels in neurons.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • Alpha7 nicotinic acetylcholine receptor is required for blood-brain barrier injury-related CNS disorders caused by Cryptococcus neoformans and HIV-1 associated comorbidit ... 26285576

    Cryptococcal meningitis is the most common fungal infection of the central nervous system (CNS) in HIV/AIDS. HIV-1 virotoxins (e.g., gp41) are able to induce disorders of the blood-brain barrier (BBB), which mainly consists of BMEC. Our recent study suggests that α7 nAChR is an essential regulator of inflammation, which contributes to regulation of NF-κB signaling, neuroinflammation and BBB disorders caused by microbial (e.g., HIV-1 gp120) and non-microbial [e.g., methamphetamine (METH)] factors. However, the underlying mechanisms for multiple comorbidities are unclear.In this report, an aggravating role of α7 nAChR in host defense against CNS disorders caused by these comorbidities was demonstrated by chemical [inhibitor: methyllycaconitine (MLA)] and genetic (α7(-/-) mice) blockages of α7 nAChR.As shown in our in vivo studies, BBB injury was significantly reduced in α7(-/-) mice infected with C. neoformans. Stimulation by the gp41 ectodomain peptide (gp41-I90) and METH was abolished in the α7(-/-) animals. C. neoformans and gp41-I90 could activate NF-κB. Gp41-I90- and METH-induced monocyte transmigration and senescence were significantly inhibited by MLA and CAPE (caffeic acid phenethyl ester, an NF-κB inhibitor).Collectively, our data suggest that α7 nAChR plays a detrimental role in the host defense against C. neoformans- and HIV-1 associated comorbidity factors-induced BBB injury and CNS disorders.
    Document Type:
    Reference
    Product Catalog Number:
    07-212
    Product Catalog Name:
    Anti-dimethyl-Histone H3 (Lys9) Antibody
  • Functional nicotinic acetylcholine receptors containing α6 subunits are on GABAergic neuronal boutons adherent to ventral tegmental area dopamine neurons. 21325521

    Diverse nicotinic acetylcholine receptor (nAChR) subtypes containing different subunit combinations can be placed on nerve terminals or soma/dendrites in the ventral tegmental area (VTA). nAChR α6 subunit message is abundant in the VTA, but α6*-nAChR cellular localization, function, pharmacology, and roles in cholinergic modulation of dopaminergic (DA) neurons within the VTA are not well understood. Here, we report evidence for α6β2*-nAChR expression on GABA neuronal boutons terminating on VTA DA neurons. α-Conotoxin (α-Ctx) MII labeling coupled with immunocytochemical staining localizes putative α6*-nAChRs to presynaptic GABAergic boutons on acutely dissociated, rat VTA DA neurons. Functionally, acetylcholine (ACh) induces increases in the frequency of bicuculline-, picrotoxin-, and 4-aminopyridine-sensitive miniature IPSCs (mIPSCs) mediated by GABA(A) receptors. These increases are abolished by α6*-nAChR-selective α-Ctx MII or α-Ctx PIA (1 nm) but not by α7 (10 nm methyllycaconitine) or α4* (1 μm dihydro-β-erythroidine)-nAChR-selective antagonists. ACh also fails to increase mIPSC frequency in VTA DA neurons prepared from nAChR β2 knock-out mice. Moreover, ACh induces an α-Ctx PIA-sensitive elevation in intraterminal Ca(2+) in synaptosomes prepared from the rat VTA. Subchronic exposure to 500 nm nicotine reduces ACh-induced GABA release onto the VTA DA neurons, as does 10 d of systemic nicotine exposure. Collectively, these results indicate that α6β2*-nAChRs are located on presynaptic GABAergic boutons within the VTA and modulate GABA release onto DA neurons. These presynaptic α6β2*-nAChRs likely play important roles in nicotinic modulation of DA neuronal activity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Nicotinic acetylcholine receptor subunit mRNA expression and channel function in medial habenula neurons. 11044729

    Relationships between nicotinic acetylcholine receptor (nAChR) channel function and nAChR subunit mRNA expression were explored in acutely isolated rat medial habenula (MHb) neurons using a combination of whole-cell recording and single cell RT-PCR techniques. Following amplification using subunit-specific primers, subunits could be categorized in one of three ways: (i) present in 95-100% cells: alpha3, alpha4, alpha5, beta2 and beta4; (ii) never present: alpha2; and (iii) sometimes present ( approximately 40% cells): alpha6, alpha7 and beta3. These data imply that alpha2 subunits do not participate in nAChRs on MHb cells, that alpha6, alpha7 and beta3 subunits are not necessary for functional channels but may contribute in some cells, and that nAChRs may require combinations of all or subsets of alpha3, alpha4, alpha5, beta2 and beta4 subunits. Little difference in the patterns of subunit expression between nicotine-sensitive and insensitive cells were revealed based on this qualitative analysis, implying that gene transcription per se may be an insufficient determinant of nAChR channel function. Normalization of nAChR subunit levels to the amount of actin mRNA, however, revealed that cells with functional channels were associated with high levels (>0.78 relative to actin; 11/12 cells) of all of the category (i) subunits: alpha3, alpha4, alpha5, beta2 and beta4. Conversely, one or more of these subunits was always low (0.40 relative to actin) in all cells with no detectable response to nicotine. Thus the formation of functional nAChR channels on MHb cells may require critical levels of several subunit mRNAs.
    Document Type:
    Reference
    Product Catalog Number:
    MAB305
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody, clone 1E6
  • Nicotinic receptor Alpha7 expression during mouse adrenal gland development. 25093893

    The nicotinic acetylcholine receptor alpha 7 (α7) is a ligand-activated ion channel that contributes to a diversity of cellular processes involved in development, neurotransmission and inflammation. In this report the expression of α7 was examined in the mouse developing and adult adrenal gland that expresses a green fluorescent protein (GFP) reporter as a bi-cistronic extension of the endogenous α7 transcript (α7(G)). At embryonic day 12.5 (E12.5) α7(G) expression was associated with the suprarenal ganglion and precursor cells of the adrenal gland. The α7(G) cells are catecholaminergic chromaffin cells as reflected by their progressive increase in the co-expression of tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) that is complete by E18.5. In the adult, α7(G) expression is limited to a subset of chromaffin cells in the adrenal medulla that cluster near the border with the adrenal cortex. These chromaffin cells co-express α7(G), TH and DBH, but they lack phenylethanolamine N-methyltransferase (PNMT) consistent with only norepinephrine (NE) synthesis. These cell groups appear to be preferentially innervated by pre-ganglionic afferents identified by the neurotrophin receptor p75. No afferents identified by beta-III tubulin, neurofilament proteins or p75 co-expressed α7(G). Occasional α7(G) cells in the pre-E14.5 embryos express neuronal markers consistent with intrinsic ganglion cells and in the adult some α7(G) cells co-express glutamic acid decarboxylase. The transient expression of α7 during adrenal gland development and its prominent co-expression by a subset of NE chromaffin cells in the adult suggests that the α7 receptor contributes to multiple aspects of adrenal gland development and function that persist into adulthood.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple