Millipore Sigma Vibrant Logo
 

gaba


1938 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (909)
  • (879)
  • (20)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Modulation of GABA(A) receptor phosphorylation and membrane trafficking by phospholipase C-related inactive protein/protein phosphatase 1 and 2A signaling complex underly ... 16754670

    Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABA(A) receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABA(A) receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABA(A) receptor beta3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABA(A) receptors. We demonstrate that PRIP associates with phosphatases as well as with beta subunits. PRIP was found to colocalize with GABA(A) receptor clusters in cultured neurons and with recombinant GABA(A) receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to beta subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABA(A) receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABA(A) receptors by mediating the specific association between beta subunits of these receptors with protein phosphatases.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Presynaptic GABA(B) receptors decrease neurotransmitter release in vestibular nuclei neurons during vestibular compensation. 22871524

    Unilateral damage to the peripheral vestibular receptors precipitates a debilitating syndrome of oculomotor and balance deficits at rest, which extensively normalize during the first week after the lesion due to vestibular compensation. In vivo studies suggest that GABA(B) receptor activation facilitates recovery. However, the presynaptic or postsynaptic sites of action of GABA(B) receptors in vestibular nuclei neurons after lesions have not been determined. Accordingly, here presynaptic and postsynaptic GABA(B) receptor activity in principal cells of the tangential nucleus, a major avian vestibular nucleus, was investigated using patch-clamp recordings correlated with immunolabeling and confocal imaging of the GABA(B) receptor subunit-2 (GABA(B)R2) in controls and operated chickens shortly after unilateral vestibular ganglionectomy (UVG). Baclofen, a GABA(B) agonist, generated no postsynaptic currents in principal cells in controls, which correlated with weak GABA(B)R2 immunolabeling on principal cell surfaces. However, baclofen decreased miniature excitatory postsynaptic current (mEPSC) and GABAergic miniature inhibitory postsynaptic current (mIPSC) events in principal cells in controls, compensating and uncompensated chickens three days after UVG, indicating the presence of functional GABA(B) receptors on presynaptic terminals. Baclofen decreased GABAergic mIPSC frequency to the greatest extent in principal cells on the intact side of compensating chickens, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 2-labeled terminals. In uncompensated chickens, baclofen decreased mEPSC frequency to the greatest extent in principal cells on the intact side, with concurrent increases in GABA(B)R2 pixel brightness and percentage overlap in synaptotagmin 1-labeled terminals. Altogether, these results revealed changes in presynaptic GABA(B) receptor function and expression which differed in compensating and uncompensated chickens shortly after UVG. This work supports an important role for GABA(B) autoreceptor-mediated inhibition in vestibular nuclei neurons on the intact side during early stages of vestibular compensation, and a role for GABA(B) heteroreceptor-mediated inhibition of glutamatergic terminals on the intact side in the failure to recover function.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. 11528422

    Controlling the number of functional gamma-aminobutyric acid A (GABA(A)) receptors in neuronal membranes is a crucial factor for the efficacy of inhibitory neurotransmission. Here we describe the direct interaction of GABA(A) receptors with the ubiquitin-like protein Plic-1. Furthermore, Plic-1 is enriched at inhibitory synapses and is associated with subsynaptic membranes. Functionally, Plic-1 facilitates GABA(A) receptor cell surface expression without affecting the rate of receptor internalization. Plic-1 also enhances the stability of intracellular GABA(A) receptor subunits, increasing the number of receptors available for insertion into the plasma membrane. Our study identifies a previously unknown role for Plic-1, a modulation of GABA(A) receptor cell surface number, which suggests that Plic-1 facilitates accumulation of these receptors in dendritic membranes.
    Document Type:
    Reference
    Product Catalog Number:
    MAB341
    Product Catalog Name:
    Anti-GABA A Receptor β 2,3 Chain Antibody, clone BD17
  • Glutamate, GABA and acetylcholine signaling components in the lamina of the Drosophila visual system. 18464935

    Synaptic connections of neurons in the Drosophila lamina, the most peripheral synaptic region of the visual system, have been comprehensively described. Although the lamina has been used extensively as a model for the development and plasticity of synaptic connections, the neurotransmitters in these circuits are still poorly known. Thus, to unravel possible neurotransmitter circuits in the lamina of Drosophila we combined Gal4 driven green fluorescent protein in specific lamina neurons with antisera to gamma-aminobutyric acid (GABA), glutamic acid decarboxylase, a GABA(B) type of receptor, L-glutamate, a vesicular glutamate transporter (vGluT), ionotropic and metabotropic glutamate receptors, choline acetyltransferase and a vesicular acetylcholine transporter. We suggest that acetylcholine may be used as a neurotransmitter in both L4 monopolar neurons and a previously unreported type of wide-field tangential neuron (Cha-Tan). GABA is the likely transmitter of centrifugal neurons C2 and C3 and GABA(B) receptor immunoreactivity is seen on these neurons as well as the Cha-Tan neurons. Based on an rdl-Gal4 line, the ionotropic GABA(A) receptor subunit RDL may be expressed by L4 neurons and a type of tangential neuron (rdl-Tan). Strong vGluT immunoreactivity was detected in alpha-processes of amacrine neurons and possibly in the large monopolar neurons L1 and L2. These neurons also express glutamate-like immunoreactivity. However, antisera to ionotropic and metabotropic glutamate receptors did not produce distinct immunosignals in the lamina. In summary, this paper describes novel features of two distinct types of tangential neurons in the Drosophila lamina and assigns putative neurotransmitters and some receptors to a few identified neuron types.
    Document Type:
    Reference
    Product Catalog Number:
    MAB363
    Product Catalog Name:
    Anti-NMDAR1 Antibody, clone 54.1
  • GABA(A) receptor downregulation in brains of subjects with autism. 18821008

    Gamma-aminobutyric acid A (GABA(A)) receptors are ligand-gated ion channels responsible for mediation of fast inhibitory action of GABA in the brain. Preliminary reports have demonstrated altered expression of GABA receptors in the brains of subjects with autism suggesting GABA/glutamate system dysregulation. We investigated the expression of four GABA(A) receptor subunits and observed significant reductions in GABRA1, GABRA2, GABRA3, and GABRB3 in parietal cortex (Brodmann's Area 40 (BA40)), while GABRA1 and GABRB3 were significantly altered in cerebellum, and GABRA1 was significantly altered in superior frontal cortex (BA9). The presence of seizure disorder did not have a significant impact on GABA(A) receptor subunit expression in the three brain areas. Our results demonstrate that GABA(A) receptors are reduced in three brain regions that have previously been implicated in the pathogenesis of autism, suggesting widespread GABAergic dysfunction in the brains of subjects with autism.
    Document Type:
    Reference
    Product Catalog Number:
    06-868
    Product Catalog Name:
    Anti-GABAA Receptor α1 Antibody
  • GABA(A) receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. 17715349

    Ambient GABA modulates firing patterns in adult neural circuits by tonically activating extrasynaptic GABA(A) receptors. Here, we demonstrate that during a developmental period when activation of GABA(A) receptors causes membrane depolarization, tonic activation of GABA(A) receptors blocks all spontaneous activity recorded in retinal ganglion cells (RGCs) and starburst amacrine cells (SACs). Bath application of the GABA(A) receptor agonist muscimol blocked spontaneous correlated increases in intracellular calcium concentration and compound postsynaptic currents in RGCs associated with retinal waves. In addition, GABA(A) receptor agonists activated a tonic current in RGCs that significantly reduced their excitability. Using a transgenic mouse in which green fluorescent protein is expressed under the metabotropic glutamate receptor subtype 2 promoter to target recordings from SACs, we found that GABA(A) receptor agonists blocked compound postsynaptic currents and also activated a tonic current. GABA(A) receptor antagonists reduced the holding current in SACs but not RGCs, indicating that ambient levels of GABA tonically activate GABA(A) receptors in SACs. GABA(A) receptor antagonists did not block retinal waves but did alter the frequency and correlation structure of spontaneous RGC firing. Interestingly, the drug aminophylline, a general adenosine receptor antagonist used to block retinal waves, induced a tonic GABA(A) receptor antagonist-sensitive current in outside-out patches excised from RGCs, indicating that aminophylline exerts its action on retinal waves by direct activation of GABA(A) receptors. These findings have implications for how various neuroactive drugs and neurohormones known to modulate extrasynaptic GABA(A) receptors may influence spontaneous firing patterns that are critical for the establishment of adult neural circuits.
    Document Type:
    Reference
    Product Catalog Number:
    AB144P
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody
  • GABA(B) receptors do not internalize after baclofen treatment, possibly due to a lack of β-arrestin association: study with a real-time visualizing assay. 22517292

    The mechanism of agonist-induced GABA(B) receptor (GABA(B) R) internalization is not well understood. To investigate this process, we focused on the interaction of GABA(B) R with β-arrestins, which are key proteins in the internalization of most of the G protein-coupled receptors, and the agonist-induced GABA(B) R internalization and the interaction of GABA(B) R with β-arrestin1 and β-arrestin2 were investigated in real time using GABA(B) R and β-arrestins both of which were fluorescent protein-tagged. We then compared these profiles with those of μ-opioid receptors (μOR), well-studied receptors that associate and cointernalize with β-arrestins. When stimulated by the specific GABA(B) R agonist baclofen, GABA(B) R composed of GABA(B1a) R (GB(1a) R) and fluorescent protein-tagged GABA(B2) R-Venus (GB₂ R-V) formed functional GABA(B) R; they elicited G protein-activated inwardly rectifying potassium channels as well as nontagged GABA(B) R. In cells coexpressing GB(1a) R, GB₂ R-V, and β-arrestin1-Cerulean (βarr1-C) or β-arrestin2-Cerulean (βarr2-C), real-time imaging studies showed that baclofen treatment neither internalized GB₂ R-V nor mobilized βarr1-C or βarr2-C to the cell surface. This happened regardless of the presence of G protein-coupled receptor kinase 4 (GRK4), which forms a complex with GABA(B) R and causes GABA(B) R desensitization. On the other hand, in cells coexpressing μOR-Venus, GRK2, and βarr1-C or βarr2-C, the μOR molecule formed μOR/βarr1 or μOR/βarr2 complexes on the cell surface, which were then internalized into the cytoplasm in a time-dependent manner. Fluorescence resonance energy transfer assay also indicated scarce association of GB₂ R-V and β-arrestins-C with or without the stimulation of baclofen, while robust association of μOR-V with β-arrestins-C was detected after μOR activation. These findings suggest that GABA(B) Rs failure to undergo agonist-induced internalization results in part from its failure to interact with β-arrestins.
    Document Type:
    Reference
    Product Catalog Number:
    AP180
    Product Catalog Name:
    Donkey Anti-Goat IgG Antibody, Species Adsorbed
  • GABA, its receptors, and GABAergic inhibition in mouse taste buds. 21490220

    Taste buds consist of at least three principal cell types that have different functions in processing gustatory signals: glial-like (type I) cells, receptor (type II) cells, and presynaptic (type III) cells. Using a combination of Ca2+ imaging, single-cell reverse transcriptase-PCR and immunostaining, we show that GABA is an inhibitory transmitter in mouse taste buds, acting on GABA(A) and GABA(B) receptors to suppress transmitter (ATP) secretion from receptor cells during taste stimulation. Specifically, receptor cells express GABA(A) receptor subunits β2, δ, and π, as well as GABA(B) receptors. In contrast, presynaptic cells express the GABA(A) β3 subunit and only occasionally GABA(B) receptors. In keeping with the distinct expression pattern of GABA receptors in presynaptic cells, we detected no GABAergic suppression of transmitter release from presynaptic cells. We suggest that GABA may serve function(s) in taste buds in addition to synaptic inhibition. Finally, we also defined the source of GABA in taste buds: GABA is synthesized by GAD65 in type I taste cells as well as by GAD67 in presynaptic (type III) taste cells and is stored in both those two cell types. We conclude that GABA is an inhibitory transmitter released during taste stimulation and possibly also during growth and differentiation of taste buds.
    Document Type:
    Reference
    Product Catalog Number:
    AB2256
    Product Catalog Name:
    Anti-GABA B Receptor R1 Antibody
  • Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. 20477909

    Neurons and certain kinds of endocrine cells, such as adrenal medullary (AM) cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles differ in Ca(2+) sensitivity and contain different signaling substances. We have recently reported that GABA functions as a paracrine factor in rat AM cells and modulates catecholamine secretion. The present experiment was undertaken to examine the subcellular localization of the GABA system including GABA itself in AM cells. Fractionation analysis with sucrose density gradient and immunocytochemistry indicated that vesicular GABA transporter (VGAT) was localized in LDCVs and not SLMVs in rat and bovine AM cells. In addition, significant amounts of GABA were detected in high density fractions, which contained LDCVs. When green fluorescence protein-VGAT and green fluorescence protein-vesicular ACh transporter were exogenously expressed in PC12 cells, the former and the latter were selectively targeted to LDCVs and SLMVs, respectively. We conclude that GABA is stored in chromaffin granules in rat and bovine AM cells through VGAT.
    Document Type:
    Reference
    Product Catalog Number:
    AB110
  • GABA B RECEPTOR R1 CONTROL PEPTIDE

    Document Type:
    Certificate of Analysis
    Lot Number:
    2899912
    Product Catalog Number:
    AG324
    Product Catalog Name:
    GABA B Receptor R1, control peptide for AB1531