Millipore Sigma Vibrant Logo
 

mab3418


931 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (541)
  • (368)
  • (2)
  • (2)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Localization of alpha-, beta-, and gamma-synuclein during neuronal development and alterations associated with the neuronal response to axonal trauma. 12821390

    Genetic and protein studies have indicated abnormalities in alpha-synuclein in neurodegenerative diseases. However, the developmental localization and cellular role of synuclein isoforms is contentious. We investigated the cellular localization of alpha-, beta-, and gamma-synuclein in developing cultured rat neurons and following axonal transection of relatively mature neurons, a model that disrupts the axonal cytoskeleton and results in regenerative sprouting. Cortical neurons were grown up to 21 days in vitro (DIV). Axon bundles at 21 DIV were transected and cellular changes examined at 4 and 24 h post-injury. Immunohistochemistry demonstrated that alpha- and beta-synuclein were localized to cellular cytosol and growth cones at 3DIV, with accumulating puncta-like labeling within axons and growth cones by 10-21DIV. In contrast, gamma-synuclein immunoreactivity was limited at all time points. By 21DIV, alpha- and beta-synuclein were present in the same neurons but largely in separate subregions, only 26% of puncta contained both alpha- and beta-synuclein immunoreactivity. Less than 20% of alpha-, beta-, and pan-synuclein immunoreactive puncta directly colocalized to synaptophysin profiles at 10DIV, decreasing to 10% at 21DIV. Both alpha- and beta-synuclein accumulated substantially within damaged axons at 21DIV and were localized to cytoskeletal abnormalities. At latter time points post-injury, alpha- and beta-synuclein immunoreactive puncta were localized to growth cone-like structures in regenerating neurites. This study shows that alpha- and beta-synuclein have a precise localization within cortical neurons and are generally nonoverlapping in their distribution within individual neurons. In addition, synuclein proteins accumulate rapidly in damaged axons and may have a role in regenerative sprouting.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Postnatal neural precursor cell regions in the rostral subventricular zone, hippocampal subgranular zone and cerebellum of the dog (Canis lupus familiaris). 23192285

    Identification of neural stem and progenitor cells (NPCs) in vitro and in vivo is essential to the use of developmental and disease models of neurogenesis. The dog is a valuable large animal model for multiple neurodegenerative diseases and is more closely matched to humans than rodents with respect to brain organization and complexity. It is therefore important to determine whether immunohistochemical markers associated with NPCs in humans and rodents are also appropriate for the dog. The NPC markers CD15, CD133, nestin, GFAP and phosphacan (DSD-1) were evaluated in situ in the canine rostral telencephalon, hippocampal dentate gyrus, and cerebellum at different postnatal time-points. Positive staining results were interpreted in the context of region and cellular morphology. Our results showed that neurospheres and cells within the rostral subventricular zone (SVZ), dentate gyrus subgranular zone (SGZ), and white matter tracts of the cerebellum were immunopositive for CD15, nestin and GFAP. Neurospheres and the cerebellum were immunonegative for CD133, whereas CD133 staining was present in the postnatal rostral SVZ. Anti-phosphacan antibody staining delineated the neurogenic niches of the rostral lateral ventricle SVZ and the hippocampal SGZ. Positive staining for phosphacan was also noted in white matter tracts of the cerebellum and within the Purkinje layer. Our results showed that in the dog these markers were associated with regions shown to be neurogenic in rodents and primates.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Interruption of beta-catenin signaling reduces neurogenesis in Alzheimer's disease. 19458225

    The neuronal loss associated with Alzheimer's disease (AD) affects areas of the brain that are vital to cognition. Although recent studies have shown that new neurons can be generated from progenitor cells in the neocortices of healthy adults, the neurogenic potential of the stem/progenitor cells of AD patients is not known. To answer this question, we compared the properties of glial progenitor cells (GPCs) from the cortices of healthy control (HC) and AD subjects. The GPCs from AD brain samples displayed reduced renewal capability and reduced neurogenesis compared with GPCs from HC brains. To investigate the mechanisms underlying this difference, we compared beta-catenin signaling proteins in GPCs from AD versus HC subjects and studied the effect of amyloid beta peptide (Abeta, a hallmark of AD pathology) on GPCs. Interestingly, GPCs from AD patients exhibited elevated levels of glycogen synthase kinase 3beta (GSK-3beta, an enzyme known to phosphorylate beta-catenin), accompanied by an increase in phosphorylated beta-catenin and a decrease in nonphosphorylated beta-catenin compared with HC counterparts. Furthermore. we found that Abeta treatment impaired the ability of GPCs from HC subjects to generate new neurons and caused changes in beta-catenin signaling proteins similar to those observed in GPCs from AD patients. Similar results were observed in GPCs isolated from AD transgenic mice. These results suggest that Abeta-induced interruption of beta-catenin signaling may contribute to the impairment of neurogenesis in AD progenitor cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Progranulin protects against amyloid β deposition and toxicity in Alzheimer's disease mouse models. 25261995

    Haploinsufficiency of the progranulin (PGRN) gene (GRN) causes familial frontotemporal lobar degeneration (FTLD) and modulates an innate immune response in humans and in mouse models. GRN polymorphism may be linked to late-onset Alzheimer's disease (AD). However, the role of PGRN in AD pathogenesis is unknown. Here we show that PGRN inhibits amyloid β (Aβ) deposition. Selectively reducing microglial expression of PGRN in AD mouse models impaired phagocytosis, increased plaque load threefold and exacerbated cognitive deficits. Lentivirus-mediated PGRN overexpression lowered plaque load in AD mice with aggressive amyloid plaque pathology. Aβ plaque load correlated negatively with levels of hippocampal PGRN, showing the dose-dependent inhibitory effects of PGRN on plaque deposition. PGRN also protected against Aβ toxicity. Lentivirus-mediated PGRN overexpression prevented spatial memory deficits and hippocampal neuronal loss in AD mice. The protective effects of PGRN against Aβ deposition and toxicity have important therapeutic implications. We propose enhancing PGRN as a potential treatment for PGRN-deficient FTLD and AD.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • An activated protein C analog stimulates neuronal production by human neural progenitor cells via a PAR1-PAR3-S1PR1-Akt pathway. 23554499

    Activated protein C (APC) is a protease with anticoagulant and cell-signaling activities. In the CNS, APC and its analogs with reduced anticoagulant activity but preserved cell signaling activities, such as 3K3A-APC, exert neuroprotective, vasculoprotective, and anti-inflammatory effects. Murine APC promotes subependymal neurogenesis in rodents in vivo after ischemic and traumatic brain injury. Whether human APC can influence neuronal production from resident progenitor cells in humans is unknown. Here we show that 3K3A-APC, but not S360A-APC (an enzymatically inactive analog of APC), stimulates neuronal mitogenesis and differentiation from fetal human neural stem and progenitor cells (NPCs). The effects of 3K3A-APC on proliferation and differentiation were comparable to those obtained with fibroblast growth factor and brain-derived growth factor, respectively. Its promoting effect on neuronal differentiation was accompanied by inhibition of astroglial differentiation. In addition, 3K3A-APC exerted modest anti-apoptotic effects during neuronal production. These effects appeared to be mediated through specific protease activated receptors (PARs) and sphingosine-1-phosphate receptors (S1PRs), in that siRNA-mediated inhibition of PARs 1-4 and S1PRs 1-5 revealed that PAR1, PAR3, and S1PR1 are required for the neurogenic effects of 3K3A-APC. 3K3A-APC activated Akt, a downstream target of S1PR1, which was inhibited by S1PR1, PAR1, and PAR3 silencing. Adenoviral transduction of NPCs with a kinase-defective Akt mutant abolished the effects of 3K3A-APC on NPCs, confirming a key role of Akt activation in 3K3A-APC-mediated neurogenesis. Therefore, APC and its pharmacological analogs, by influencing PAR and S1PR signals in resident neural progenitor cells, may be potent modulators of both development and repair in the human CNS.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Isoflurane inhibits growth but does not cause cell death in hippocampal neural precursor cells grown in culture. 19293697

    Isoflurane causes long-term hippocampal-dependent learning deficits in rats despite limited isoflurane-induced hippocampal cell death, raising questions about the causality between isoflurane-induced cell death and isoflurane-induced cognitive function. Neurogenesis in the dentate gyrus is required for hippocampal-dependent learning and thus constitutes a potential alternative mechanism by which cognition can be altered after neonatal anesthesia. The authors tested the hypothesis that isoflurane alters proliferation and differentiation of hippocampal neural progenitor cells.Multipotent neural progenitor cells were isolated from pooled rat hippocampi (postnatal day 2) and grown in culture. These cells were exposed to isoflurane and evaluated for cell death using lactate dehydrogenase release, caspase activity, and immunocytochemistry for nuclear localization of cleaved caspase 3. Growth was assessed by cell counting and BrdU incorporation. Expression of markers of stemness (Sox2) and cell division (Ki67) were determined by quantitative polymerase chain reaction. Cell fate selection was assessed using immunocytochemistry to stain for neuronal and glial markers.Isoflurane did not change lactate dehydrogenase release, activity of caspase 3/7, or the amount of nuclear cleaved caspase 3. Isoflurane decreased caspase 9 activity, inhibited proliferation, and decreased the proportion of cells in s-phase. messenger ribonucleic acid expression of Sox2 (stem cells) and Ki67 (proliferation) were decreased. Differentiating neural progenitor cells more often select a neuronal fate after isoflurane exposure.The authors conclude that isoflurane does not cause cell death, but it does act directly on neural progenitor cells independently of effects on the surrounding brain to decrease proliferation and increase neuronal fate selection. These changes could adversely affect cognition after isoflurane anesthesia.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Two classes of GABAergic neurons in the inferior colliculus. 19889997

    The inferior colliculus (IC) is unique, having both glutamatergic and GABAergic projections ascending to the thalamus. Although subpopulations of GABAergic neurons in the IC have been proposed, criteria to distinguish them have been elusive and specific types have not been associated with specific neural circuits. Recently, the largest IC neurons were found to be recipients of somatic terminals containing vesicular glutamate transporter 2 (VGLUT2). Here, we show with electron microscopy that VGLUT2-positive (VGLUT2(+)) axonal terminals make axosomatic synapses on IC neurons. These terminals contain only VGLUT2 even though others in the IC have VGLUT1 or both VGLUT1 and 2. We demonstrate that there are two types of GABAergic neurons: larger neurons with VGLUT2(+) axosomatic endings and smaller neurons without such endings. Both types are present in all subdivisions of the IC, but larger GABAergic neurons with VGLUT2(+) axosomatic terminals are most prevalent in the central nucleus. The GABAergic tectothalamic neurons consist almost entirely of the larger cells surrounded by VGLUT2(+) axosomatic endings. Thus, two types of GABAergic neurons in the IC are defined by different synaptic organization and neuronal connections. Larger tectothalamic GABAergic neurons are covered with glutamatergic axosomatic synapses that could allow them to fire rapidly and overcome a slow membrane time constant; their axons-05-be the largest in the brachium of the IC. Thus, large GABAergic neurons could deliver IPSPs to the medial geniculate body before EPSPs from glutamatergic IC neurons firing simultaneously.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Alpha-synuclein aggregation involves a bafilomycin A 1-sensitive autophagy pathway. 22647715

    Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A 1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Tunicamycin produces TDP-43 cytoplasmic inclusions in cultured brain organotypic slices. 22459357

    The cellular distribution of TAR DNA binding protein (TDP-43) is disrupted in several neurodegenerative disorders, including frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U subtype) and amyotrophic lateral sclerosis (ALS). In these conditions, TDP-43 is found in neuronal cytoplasmic inclusions, with loss of the normal nuclear expression. The mechanisms leading to TDP-43 redistribution and its role in disease pathophysiology remain unknown. We describe an in vitro neural tissue model that reproduces TDP-43 relocalization and inclusion formation. Two week-old coronal organotypic mouse brain slice cultures were treated with tunicamycin for 7 days. In cortical regions of treated slice cultures, cytoplasmic inclusions of TDP-43 immunoreactivity were observed, with loss of nuclear TDP-43 immunoreactivity. These inclusions were found in both astrocytes and neurons, and were of both skein-like and round morphologies. In contrast, TDP-43 cytoplasmic inclusions were not found in slices treated with staurosporine to induce apoptosis, or with trans-4-carboxy-l-proline (PDC) to induce chronic glutamate excitotoxicity. Furthermore, TDP-43 cytoplasmic inclusions did not co-localize with cleaved caspase-3, suggesting that TDP-43 mislocalization does not generally accompany caspase activation or apoptosis. The induction of TDP-43 cytoplasmic translocation in cerebrocortical slice cultures by tunicamycin provides a platform for further mechanistic investigations of pathological processing of TDP-43.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Heterogeneity of microtubule-associated protein 2 during rat brain development. 6591209

    The electrophoretic pattern of the large microtubule-associated protein, MAP2, changes during rat brain development. Immunoblots of NaDodSO4 extracts obtained from the cerebral cortex, cerebellum, and thalamus at 10-15 days after birth reveal only a single electrophoretic species when probed with any of three MAP2 monoclonal antibodies. By contrast, adult MAP2 contains two immunoreactive species, MAP2a and MAP2b. The single band of MAP2 from immature brain electrophoretically comigrates with adult MAP2b. Between postnatal days 17 and 18, immature MAP2 simultaneously resolves into two species in both the cerebellum and cerebral cortex. Immunoblots of NaDodSO4 extracts from spinal cord demonstrate the adult complement of MAP2 by day 10, indicating that MAP2 does not change coordinately throughout the entire central nervous system. In vitro cAMP-dependent phosphorylation of immature MAP2 causes a band split reminiscent of that seen during brain development in vivo. The possibility that the developmentally regulated changes observed in MAP2 during brain maturation are due to timed phosphorylation events is discussed.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple