Millipore Sigma Vibrant Logo
 

punta


118 Results Advanced Search  
Showing
Products (0)
Documents (118)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. 17712061

    Differentiation and patterning in the developing nervous system require the vitamin A metabolite all-trans-retinoic acid (atRA). Recent data suggest that higher cognitive functions, such as creation of hippocampal memory, also require atRA and its receptors, RAR, through affecting synaptic plasticity. Here we show that within 30 min atRA increased dendritic growth approximately 2-fold, and PSD-95 and synaptophysin puncta intensity approximately 3-fold, in cultured mouse hippocampal neurons, suggesting increased synapse formation. atRA (10 nM) increased ERK1/2 phosphorylation within 10 min. In synaptoneurosomes, atRA rapidly increased phosphorylation of ERK1/2, its target 4E-BP, and p70S6K, and its substrate, ribosome protein S6, indicating activation of MAPK and mammalian target of rapamycin (mTOR). Immunofluorescence revealed intense dendritic expression of RARalpha in the mouse hippocampus and localization of RARalpha on the surfaces of primary cultures of hippocampal neurons, with bright puncta along soma and neurites. Surface biotinylation confirmed the locus of RARalpha expression. Knockdown of RARalpha by shRNA impaired atRA-induced spine formation and abolished dendritic growth. Prolonged atRA stimulation reduced surface/total RARalpha by 43%, suggesting internalization, whereas brain-derived nerve growth factor or bicuculline increased the ratio by approximately 1.8-fold. atRA increased translation in the somatodendritic compartment, similar to brain-derived nerve growth factor. atRA specifically increased dendritic translation and surface expression of the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionate receptor (AMPAR) subunit 1 (GluR1), without affecting GluR2. These data provide mechanistic insight into atRA function in the hippocampus and identify a unique membrane-associated RARalpha that mediates rapid induction of neuronal translation by atRA.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5346
    Product Catalog Name:
    Anti-RAR alpha Antibody, clone 76
  • Cellular and Synaptic Localization of EAAT2a in Human Cerebral Cortex. 21258616

    We used light and electron microscopic immunocytochemical techniques to analyze the distribution, cellular and synaptic localization of EAAT2, the main glutamate transporter, in normal human neocortex. EAAT2a-immunoreactivity (ir) was in all layers and consisted of small neuropilar puncta and rare cells. In white matter EAAT2a+ cells were numerous. Electron microscopic studies showed that in gray matter ∼77% of immunoreactive elements were astrocytic processes, ∼14% axon terminals, ∼2.8% dendrites, whereas ∼5% were unidentifiable. In white matter, ∼81% were astrocytic processes, ∼17% were myelinated axons, and ∼2.0% were unidentified. EAAT2a-ir was never in microglial cells and oligodendrocytes. Pre-embedding electron microscopy showed that ∼67% of EAAT2a expressed at (or in the vicinity of) asymmetric synapses was in astrocytes, ∼17% in axon terminals, while ∼13% was both in astrocytes and in axons. Post-embedding electron microscopy studies showed that in astrocytic processes contacting asymmetric synapses and in axon terminals, gold particle density was ∼25.1 and ∼2.8 particles/μm(2), respectively, and was concentrated in a membrane region extending for ∼300 nm from the active zone edge. Besides representing the first detailed description of EAAT2a in human cerebral cortex, these findings may contribute to understanding its role in the pathophysiology of neuropsychiatric diseases.
    Document Type:
    Reference
    Product Catalog Number:
    AB5905
    Product Catalog Name:
    Anti-Vesicular Glutamate Transporter 1 Antibody
  • Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex. 9512391

    We have examined the pattern of immunostaining for the high-affinity GABA transporter GAT-1 in the human temporal neocortex. Immunocytochemistry for GAT-1 labels terminal-like puncta in the neuropil and around unstained cell bodies. The characteristic terminal portions of chandelier cell axons (Ch-terminals, which form multiple inhibitory GABAergic synaptic contacts with the axon initial segments of pyramidal cells) were among the strongest immunocytochemically stained elements for GAT-1. Since Ch-terminals are immunoreactive for the calcium-binding protein parvalbumin, experiments were carried out to study the co-localization of GAT-1 and parvalbumin in Ch-terminals. These experiments showed that the vast majority of Ch-terminals immunoreactive for GAT-1 were also immunoreactive for PV. We concluded that GAT-1 transporter may have an important functional role in controlling pyramidal cell activity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Neuregulin 1 promotes excitatory synapse development and function in GABAergic interneurons. 21209185

    Neuregulin 1 (NRG1) and its receptor ErbB4 are both susceptibility genes of schizophrenia. However, little is known about the underlying mechanisms of their malfunction. Although ErbB4 is enriched in GABAergic interneurons, the role of NRG1 in excitatory synapse formation in these neurons remains poorly understood. We showed that NRG1 increased both the number and size of PSD-95 puncta and the frequency and amplitude of miniature EPSCs (mEPSCs) in GABAergic interneurons, indicating that NRG1 stimulates the formation of new synapses and strengthens existing synapses. In contrast, NRG1 treatment had no effect on either the number or size of excitatory synapses in glutamatergic neurons, suggesting its synaptogenic effect is specific to GABAergic interneurons. Ecto-ErbB4 treatment diminished both the number and size of excitatory synapses, suggesting that endogenous NRG1 may be critical for basal synapse formation. NRG1 could stimulate the stability of PSD-95 in the manner that requires tyrosine kinase activity of ErbB4. Finally, deletion of ErbB4 in parvalbumin-positive interneurons led to reduced frequency and amplitude of mEPSCs, providing in vivo evidence that ErbB4 is important in excitatory synaptogenesis in interneurons. Together, our findings suggested a novel synaptogenic role of NRG1 in excitatory synapse development, possibly via stabilizing PSD-95, and this effect is specific to GABAergic interneurons. In light of the association of the genes of both NRG1 and ErbB4 with schizophrenia and dysfunction of GABAergic system in this disorder, these results provide insight into its potential pathological mechanism.
    Document Type:
    Reference
    Product Catalog Number:
    05-532
    Product Catalog Name:
    Anti-CaM Kinase II Antibody, α subunit, clone 6G9
  • Two populations of neurokinin 1 receptor-expressing projection neurons in lamina I of the rat spinal cord that differ in AMPA receptor subunit composition and density of ... 20303396

    Lamina I of the spinal cord contains many projection neurons that express the neurokinin 1 receptor (NK1r). It has been reported that these cells can undergo long-term potentiation (LTP), which may result from insertion of AMPA-type glutamate receptors (AMPArs) containing GluA1 or GluA4 subunits. We therefore investigated synaptic AMPAr expression on these cells with immunocytochemistry following antigen-retrieval. We also examined their density of glutamatergic input (by analysing AMPAr synaptic puncta and contacts from glutamatergic boutons), and phosphorylation of extracellular signal-regulated kinases (pERKs) following noxious stimulation. Our results indicate that there are two populations of NK1r-expressing projection neurons: large GluA4(+)/GluA1(-) cells with a high density of glutamatergic input and small GluA1(+)/GluA4(-) cells with a much lower input density. Results from pERK experiments suggested that the two groups may not differ in the types of noxious stimulus that activate them. Glutamatergic synapses on distal dendrites of the large cells were significantly longer than those on proximal dendrites, which presumably compensates for the greater attenuation of distally-generated excitatory postsynaptic currents (EPSCs). Both types of cell received contacts from peptidergic primary afferents, however, on the large cells these appeared to constitute over half of the glutamatergic synapses, and were often associated with elongated AMPAr puncta. This suggests that these afferents, which probably contain substance P, provide a powerful, secure synaptic input to large NK1r-expressing projection neurons. These results demonstrate the importance of GluA4-containing AMPArs in nociceptive transmission and raise the possibility that different forms of LTP in lamina I projection neurons may be related to differential expression of GluA1/GluA4.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Neural cell adhesion molecule-secreting transgenic mice display abnormalities in GABAergic interneurons and alterations in behavior. 15872114

    The extracellular region of the transmembrane neural cell adhesion molecule (NCAM-EC) is shed as a soluble fragment at elevated levels in the schizophrenic brain. A novel transgenic mouse line was generated to identify consequences on cortical development and function of expressing soluble NCAM-EC from the neuron-specific enolase promoter in the developing and mature neocortex and hippocampus. NCAM-EC transgenic mice exhibited a striking reduction in synaptic puncta of GABAergic interneurons in the cingulate, frontal association cortex, and amygdala but not hippocampus, as shown by decreased immunolabeling of glutamic acid decarboxylase-65 (GAD65), GAD67, and GABA transporter 1. Interneuron cell density was unaltered in the transgenic mice. Affected subpopulations of interneurons included basket interneurons evident in NCAM-EC transgenic mice intercrossed with a reporter line expressing green fluorescent protein and by parvalbumin staining. In addition, there appeared to be a reduction in excitatory synapses, as revealed by synaptophysin staining and apical dendritic spine density of cortical pyramidal cells. Behavioral analyses demonstrated higher basal locomotor activity of NCAM-EC mice and enhanced responses to amphetamine and (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate compared with wild-type controls. Transgenic mice were deficient in prepulse inhibition, which was restored by clozapine but not by haloperidol. Additionally, NCAM-EC mice were impaired in contextual and cued fear conditioning. These results suggested that elevated shedding of NCAM perturbs synaptic connectivity of GABAergic interneurons and produces abnormal behaviors that may be relevant to schizophrenia and other neuropsychiatric disorders.
    Document Type:
    Reference
    Product Catalog Number:
    AB5032
    Product Catalog Name:
    Anti-Neural Cell Adhesion Molecule Antibody
  • Co-localisation of markers for glycinergic and GABAergic neurones in rat nucleus of the solitary tract: implications for co-transmission. 20434539

    Immunoreactive structures visualised with antibodies to glycine were prominent in areas of the nucleus of the solitary tract (NTS) surrounding the tractus solitarius, but scarcer in medial and ventral areas of the nucleus. This contrasted with a higher density, more homogenous distribution of structures labelled for gamma-aminobutyric acid (GABA). Immunolabelling of adjacent semi-thin sections nonetheless indicated a close correspondence between cells and puncta labelled by glycine and GABA antisera in certain NTS areas. With post-embedding electron microscopic immunolabelling, synaptic terminals with high, presumed transmitter levels of glycine were discriminated from terminals containing low, metabolic levels by quantitative analysis of gold particle labelling densities. In a random sample of terminals, 28.5% qualified on this basis as glycinergic (compared to 44.4% GABAergic); these glycinergic terminals targeted mainly dendritic structures and contained pleomorphic vesicles and symmetrical synapses. Serial section analysis revealed few terminals (5.2%) immunoreactive for glycine alone, with 82% of glycinergic terminals also containing high levels of GABA immunoreactivity. No evidence for co-localisation of glycine and glutamate was found. Light, confocal and electron microscopic labelling with antibodies to proteins specific for glycine and GABA synthesis, release and uptake confirmed that glycinergic terminals also containing GABA are found predominantly in more lateral areas of NTS, despite glycine receptors and the 'glial' glycine transporter (GLYT1) being expressed throughout all areas of the nucleus. The data suggest that synaptic terminals in certain functionally distinct areas of NTS co-release both inhibitory amino acids, which may account for the previously reported differential inhibitory effects of glycine and GABA on NTS neurones.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5406
    Product Catalog Name:
    Anti-GAD67 Antibody, clone 1G10.2
  • Deacetylation of FoxO by Sirt1 Plays an Essential Role in Mediating Starvation-Induced Autophagy in Cardiac Myocytes. 20947830

    autophagy, a bulk degradation process of cytosolic proteins and organelles, is protective during nutrient starvation in cardiomyocytes (CMs). However, the underlying signaling mechanism mediating autophagy is not well understood.we investigated the role of FoxOs and its posttranslational modification in mediating starvation-induced autophagy.glucose deprivation (GD) increased autophagic flux in cultured CMs, as evidenced by increased mRFP-GFP-LC3 puncta and decreases in p62, which was accompanied by upregulation of Sirt1 and FoxO1. Overexpression of either Sirt1 or FoxO1 was sufficient for inducing autophagic flux, whereas both Sirt1 and FoxO1 were required for GD-induced autophagy. GD increased deacetylation of FoxO1, and Sirt1 was required for GD-induced deacetylation of FoxO1. Overexpression of FoxO1(3A/LXXAA), which cannot interact with Sirt1, or p300, a histone acetylase, increased acetylation of FoxO1 and inhibited GD-induced autophagy. FoxO1 increased expression of Rab7, a small GTP-binding protein that mediates late autophagosome-lysosome fusion, which was both necessary and sufficient for mediating FoxO1-induced increases in autophagic flux. Although cardiac function was maintained in control mice after 48 hours of food starvation, it was significantly deteriorated in mice with cardiac-specific overexpression of FoxO1(3A/LXXAA), those with cardiac-specific homozygous deletion of FoxO1 (c-FoxO1(-/-)), and beclin1(+/-) mice, in which autophagy is significantly inhibited.these results suggest that Sirt1-mediated deacetylation of FoxO1 and upregulation of Rab7 play an important role in mediating starvation-induced increases in autophagic flux, which in turn plays an essential role in maintaining left ventricular function during starvation.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Microtubule-severing ATPase spastin in glioblastoma: increased expression in human glioblastoma cell lines and inverse roles in cell motility and proliferation. 21865889

    We studied the expression and distribution of the microtubule-severing enzyme spastin in 3 human glioblastoma cell lines (U87MG, U138MG, and T98G) and in clinical tissue samples representative of all grades of diffuse astrocytic gliomas (n = 45). In adult human brains, spastin was distributed predominantly in neuronsand neuropil puncta and, to a lesser extent, in glia. Compared with normal mature brain tissues, spastin expression and cellular distribution were increased in neoplastic glial phenotypes, especiallyin glioblastoma (p < 0.05 vs low-grade diffuse astrocytomas). Overlapping punctate and diffuse patterns of localization wereidentified in tumor cells in tissues and in interphase and mitotic cells ofglioblastoma cell lines. There was enrichment of spastin in the leading edges of cells in T98G glioblastoma cell cultures and in neoplastic cell populations in tumor specimens. Real-time polymerase chain reaction and immunoblotting experiments revealed greater levels of spastin messenger RNA and protein expression in theglioblastoma cell lines versus normal human astrocytes. Functional experiments indicated that spastin depletion resulted in reduced cell motility and higher cell proliferation of T98G cells. Toour knowledge, this is the first report of spastin involvement incellmotility. Collectively, our results indicate that spastinexpression in glioblastomas might be linked to tumor cell motility, migration, and invasion.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5634
  • Hypertonic stress promotes autophagy and microtubule-dependent autophagosomal clusters. 23380587

    Osmotic homeostasis is fundamental for most cells, which face recurrent alterations of environmental osmolality that challenge cell viability. Protein damage is a consequence of hypertonic stress, but whether autophagy contributes to the osmoprotective response is unknown. Here, we investigated the possible implications of autophagy and microtubule organization on the response to hypertonic stress. We show that hypertonicity rapidly induced long-lived protein degradation, LC3-II generation and Ptdlns3K-dependent formation of LC3- and ATG12-positive puncta. Lysosomotropic agents chloroquine and bafilomycin A 1, but not nutrient deprivation or rapamycin treatment, further increased LC3-II generation, as well as ATG12-positive puncta, indicating that hypertonic stress increases autophagic flux. Autophagy induction upon hypertonic stress enhanced cell survival since cell death was increased by ATG12 siRNA-mediated knockdown and reduced by rapamycin. We additionally showed that hypertonicity induces fast reorganization of microtubule networks, which is associated with strong reorganization of microtubules at centrosomes and fragmentation of Golgi ribbons. Microtubule remodeling was associated with pericentrosomal clustering of ATG12-positive autolysosomes that colocalized with SQSTM1/p62 and ubiquitin, indicating that autophagy induced by hypertonic stress is at least partly selective. Efficient autophagy by hypertonic stress required microtubule remodeling and was DYNC/dynein-dependent as autophagosome clustering was enhanced by paclitaxel-induced microtubule stabilization and was reduced by nocodazole-induced tubulin depolymerization as well as chemical (EHNA) or genetic [DCTN2/dynactin 2 (p50) overexpression] interference of DYNC activity. The data document a general and hitherto overlooked mechanism, where autophagy and microtubule remodeling play prominent roles in the osmoprotective response.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5