Skip to Content
Merck
  • Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis.

Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis.

The Journal of nutritional biochemistry (2017-09-04)
Lucia Dwi Antika, Eun-Jung Lee, Yun-Ho Kim, Min-Kyung Kang, Sin-Hye Park, Dong Yeon Kim, Hyeongjoo Oh, Yean-Jung Choi, Young-Hee Kang
ABSTRACT

Osteoporosis is one of the most prevalent forms of age-related bone diseases. Increased bone loss with advancing age has become a grave public health concern. This study examined whether phlorizin and phloretin, dihydrochalcones in apple peels, inhibited senile osteoporosis through enhancing osteoblastogenic bone formation in cell-based and aged mouse models. Submicromolar phloretin and phlorizin markedly stimulated osteoblast differentiation of MC3T3-E1 cells with increased transcription of Runx2 and osteocalcin. Senescence-accelerated resistant mouse strain prone-6 (SAMP6) mice were orally supplemented with 10 mg/kg phlorizin and phloretin daily for 12 weeks. Male senescence-accelerated resistant mouse strain R1 mice were employed as a nonosteoporotic age-matched control. Oral administration of ploretin and phorizin boosted bone mineralization in all the bones of femur, tibia and vertebra of SAMP6. In particular, phlorizin reduced serum RANKL/OPG ratio and diminished TRAP-positive osteoclasts in trabecular bones of SAMP6. Additionally, treating phlorizin to SAMP6 inhibited the osteoporotic resorption in distal femoral bones through up-regulating expression of BMP-2 and collagen-1 and decreasing production of matrix-degrading cathepsin K and MMP-9. Finally, phlorizin and phloretin antagonized GSK-3β induction and β-catenin phosphorylation in osteoblasts and aged mouse bones. Therefore, phlorizin and phloretin were potential therapeutic agents encumbering senile osteoporosis through promoting bone-forming osteoblastogenesis via modulation of GSK-3β/β-catenin-dependent signaling.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
DL-Glyceraldehyde 3-phosphate solution, 45-55 mg/mL in H2O
Sigma-Aldrich
Human Osteocalcin ELISA Kit, for cell culture supernatants, plasma, and serum samples