Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
A FLAG epitope tag was substituted within variable loop 1 (V1), 2 (V2), or 4 (V4) of the gp120 envelope glycoprotein of simian immunodeficiency virus strain 239 (SIV239) to evaluate the extent to which each variable loop may serve as a target for antibody-mediated neutralization. Two sites within each variable loop of SIV239 were chosen for individual epitope tag insertions. FLAG epitope substitutions were also made in the V1, V2, and V4 loops of a neutralization-sensitive derivative of SIV239, SIV316. Of the 10 FLAG-tagged recombinant viruses analyzed, three (SIV239FV1b, SIV239FV2b, and SIV239FV4a) replicated with kinetics similar to those of the parental strain, SIV239, in both CEMx174 cells and the immortalized rhesus monkey T-cell line 221. The SIV316FV1b and SIV316FV4a FLAG variants replicated with a substantial lag, and the five remaining recombinants did not replicate detectably. Both gp160 and gp120 from replication-competent FLAG variants could be immunoprecipitated from transfected 293T cells by the anti-gp120 rhesus monoclonal antibody (RhMAb) 3.11H, the anti-FLAG MAb M2, and CD4-immunoglobulin, whereas only unprocessed gp160 was detected in 293T cells transfected with replication-defective variants. Furthermore, gp120 was detectably incorporated only into virions that were infectious. SIV239FV1b was sensitive to neutralization by MAb M2, with a 50% inhibitory concentration of 1 mug/ml. Neither SIV239FV2b nor SIV239FV4a was sensitive to M2 neutralization. The ability of the M2 antibody to neutralize SIV239FV1b infectivity was associated with an increased ability of the M2 antibody to detect native, oligomeric SIV239FV1b envelope protein on the surfaces of cells relative to that for the other SIV FLAG variants. Furthermore, SIV239FV1b was globally more sensitive to antibody-mediated neutralization than was parental SIV239 when these strains were screened with a panel of anti-SIV MAbs of various specificities. These results indicate that the V1 loop can serve as an effective target for neutralization on SIV239FV1b. However, antibody-mediated neutralization of this variant, similar to that of other SIV239 variants that have been studied previously, was associated with a global increase in neutralization sensitivity. These results suggest that the variable loops on the neutralization-resistant SIV239 strain are difficult for antibodies to access effectively and that mutations that allow neutralization have global effects on the trimeric envelope glycoprotein structure and accessibility.
FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool.