Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Epithelial to mesenchymal transition (EMT) occurs normally in development. In pathology, EMT drives cancer and fibrosis. Medication with phenytoin, nifedipine, and cyclosporine-A often causes gingival overgrowth. Based partly on the histopathology of gingival overgrowth, the present study investigates the hypothesis that EMT could contribute to its development. We found that phenytoin-induced human gingival overgrowth tissues, the most fibrotic drug-induced variety, contain diminished epithelial E-cadherin expression, whereas fibroblast-specific protein-1 (FSP-1) and alphavbeta6 integrin levels are up-regulated. In connective tissue stroma, fibronectin and alternatively spliced fibronectin extra type III domain A (FN-ED-A) levels are increased in overgrowth lesions. Transforming growth factor (TGF)-beta1 treatment of primary human gingival epithelial cells cultured in transwellplates resulted in inhibited barrier function as determined by reduced electrical resistance, paracellular permeability assays, and cell surface E-cadherin expression. Moreover, TGF-beta1 altered the expression of other markers of EMT determined at the mRNA and protein levels: E-cadherin decreased, whereas SLUG, fibronectin, matrix metalloproteinase (MMP)2, MMP9, and MMP13 increased. Nifedipine- and cyclosporine A-induced gingival overgrowth tissues similarly contain diminished E-cadherin and elevated levels of FSP-1 and fibronectin, but normal levels of alphavbeta6 integrin. In summary, data in vitro support that human gingival epithelial cells undergo functional and gene expression changes consistent with EMT in response to TGF-beta1, and in vivo studies show that important EMT markers occur in clinical gingival overgrowth tissues. These findings support the hypothesis that EMT likely occurs in drug-induced gingival overgrowth.
Complex results concerning the effect of glucocorticoids on insulin secretion have been reported. The aim of this study is to clarify the direct effects of glucocorticoids on pancreatic islets and to determine whether the effect of glucocorticoids on insulin biosynthesis or release is dependent on the dose and duration of treatment with glucocorticoid. Studies on insulin secretion and biosynthesis were performed with different concentrations (0, 1, 10, 100 nmol/l) and durations (1 and 6 h) of treatment with dexamethasone (dexa) in rat pancreatic islets. (1) One nmol/l dexa had no inhibitory effect on insulin secretion and biosynthesis. Ten and 100 nmol/l had an inhibitory effect on insulin secretion, which was mainly due to suppression of the first phase of insulin secretion. (2) Insulin content was significantly increased regardless of the concentration in 1-h treated islets. However, insulin content was markedly diminished with 100 nmol/l dexa in 6-h treated islets. (3) The preproinsulin mRNA expression of 6-h treated islets was suppressed in a dose-dependent manner. Our data revealed that, in the condition of short-term and low-dose glucocorticoid exposure, insulin secretion and biosynthesis are not affected. The secretory process of insulin seems to be the initial step of the inhibitory action of glucocorticoid. Both insulin release and biosynthesis are inhibited by chronic exposure to high dose dexamethasone. It can be concluded that glucocorticoid might be involved in the multisteps of insulin release and biosynthesis.
Mammalian oocytes are arrested in meiotic prophase by an inhibitory signal from the surrounding somatic cells in the ovarian follicle. In response to luteinizing hormone (LH), which binds to receptors on the somatic cells, the oocyte proceeds to second metaphase, where it can be fertilized. Here we investigate how the somatic cells regulate the prophase-to-metaphase transition in the oocyte, and show that the inhibitory signal from the somatic cells is cGMP. Using FRET-based cyclic nucleotide sensors in follicle-enclosed mouse oocytes, we find that cGMP passes through gap junctions into the oocyte, where it inhibits the hydrolysis of cAMP by the phosphodiesterase PDE3A. This inhibition maintains a high concentration of cAMP and thus blocks meiotic progression. LH reverses the inhibitory signal by lowering cGMP levels in the somatic cells (from approximately 2 microM to approximately 80 nM at 1 hour after LH stimulation) and by closing gap junctions between the somatic cells. The resulting decrease in oocyte cGMP (from approximately 1 microM to approximately 40 nM) relieves the inhibition of PDE3A, increasing its activity by approximately 5-fold. This causes a decrease in oocyte cAMP (from approximately 700 nM to approximately 140 nM), leading to the resumption of meiosis.