Millipore Sigma Vibrant Logo
 

ABETA


1287 Results 고급 검색  
검색결과 보기

결과내 검색 검색을 미세조정하려면 아래의 필터를 이용하십시오

찾으시는 것을 발견할 수 없으십니까?
고객 서비스에 연락하십시오

 
문서 검색을 위한 도움이 필요하신가요?
  • CoA나 CoQ, MSDS 검색을 위해 문서 검색기를 이용해 보세요.
  • 사용자 가이드 또는 매뉴얼을 원하시면 고객 서비스팀에 연락주시기 바랍니다.
  • Abeta peptides can enter the brain through a defective blood-brain barrier and bind selectively to neurons. 17306234

    We have investigated the possibility that soluble, blood-borne amyloid beta (Abeta) peptides can cross a defective blood-brain barrier (BBB) and interact with neurons in the brain. Immunohistochemical analyses revealed extravasated plasma components, including Abeta42 in 19 of 21 AD brains, but in only 3 of 13 age-matched control brains, suggesting that a defective BBB is common in AD. To more directly test whether blood-borne Abeta peptides can cross a defective BBB, we tracked the fate of fluorescein isothiocyanate (FITC)-labeled Abeta42 and Abeta40 introduced via tail vein injection into mice with a BBB rendered permeable by treatment with pertussis toxin. Both Abeta40 and Abeta42 readily crossed the permeabilized BBB and bound selectively to certain neuronal subtypes, but not glial cells. By 48 h post-injection, Abeta42-positive neurons were widespread in the brain. In the cerebral cortex, small fluorescent, Abeta42-positive granules were found in the perinuclear cytoplasm of pyramidal neurons, suggesting that these cells can internalize exogenous Abeta42. An intact BBB (saline-injected controls) blocked entry of blood-borne Abeta peptides into the brain. The neuronal subtype selectivity of Abeta42 and Abeta40 was most evident in mouse brains subjected to direct intracranial stereotaxic injection into the hippocampal region, thereby bypassing the BBB. Abeta40 was found to preferentially bind to a distinct subset of neurons positioned at the inner face of the dentate gyrus, whereas Abeta42 bound selectively to the population of large neurons in the hilus region of the dentate gyrus. Our results suggest that the blood may serve as a major, chronic source of soluble, exogenous Abeta peptides that can bind selectively to certain subtypes of neurons and accumulate within these cells.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Abeta peptides accelerate the senescence of endothelial cells in vitro and in vivo, impairing angiogenesis. 20207941

    Cerebral amyloid angiopathy (CAA) caused by amyloid beta (Abeta) deposition around brain microvessels results in vascular degenerative changes. Antiangiogenic Abeta properties are known to contribute to the compromised cerebrovascular architecture. Here we hypothesize that Abeta peptides impair angiogenesis by causing endothelial cells to enter senescence at an early stage of vascular development. Wild-type (WT) Abeta and its mutated variant E22Q peptide, endowed with marked vascular tropism, were used in this study. In vivo, in zebrafish embryos, the WT or E22Q peptides reduced embryo survival with an IC(50) of 6.1 and 4.7 microM, respectively. The 2.5 microM concentration, showing minimal toxicity, was chosen. Alkaline phosphatase staining revealed disorganized vessel patterning, narrowing, and reduced branching of vessels. Beta-galactosidase staining and the cyclin-dependent kinase inhibitor p21 expression, indicative of senescence, were increased. In vitro, WT and E22Q reduced endothelial cell survival with an IC(50) of 12.3 and 8.8 microM, respectively. The 5 microM concentration, devoid of acute effects on the endothelium, was applied chronically to long-term cultured human umbilical vein endothelial cells (HUVECs). We observed reduced cumulative population doubling, which coincided with beta-galactosidase accumulation, down-regulation of telomerase reverse-transcriptase mRNA expression, decreased telomerase activity, and p21 activation. Senescent HUVECs showed marked angiogenesis impairment, as Abeta treatment reduced tube sprouting. The endothelial injuries caused by the E22Q peptide were much more aggressive than those induced by the WT peptide. Premature Abeta-induced senescence of the endothelium, producing progressive alterations of microvessel morphology and functions, may represent one of the underlying mechanisms for sporadic or heritable CAA.
    문서 타입:
    Reference
    카탈로그 번호:
    S7710
    제품명:
    TRAPEZE® RT Telomerase Detection Kit
  • ApoER2 expression increases Abeta production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and i ... 17620134

    The generation of the amyloid-beta peptide (Abeta) through the proteolytic processing of the amyloid precursor protein (APP) is a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies highlight APP endocytosis and localization to lipid rafts as important events favoring amyloidogenic processing. However, the precise mechanisms underlying these events are poorly understood. ApoER2 is a member of the low density lipoprotein receptor (LDL-R) family exhibiting slow endocytosis rate and a significant association with lipid rafts. Despite the important neurophysiological roles described for ApoER2, little is known regarding how ApoER2 regulates APP trafficking and processing.Here, we demonstrate that ApoER2 physically interacts and co-localizes with APP. Remarkably, we found that ApoER2 increases cell surface APP levels and APP association with lipid rafts. The increase of cell surface APP requires the presence of ApoER2 cytoplasmic domain and is a result of decreased APP internalization rate. Unexpectedly, ApoER2 expression correlated with a significant increase in Abeta production and reduced levels of APP-CTFs. The increased Abeta production was dependent on the integrity of the NPxY endocytosis motif of ApoER2. We also found that expression of ApoER2 increased APP association with lipid rafts and increased gamma-secretase activity, both of which might contribute to increased Abeta production.These findings show that ApoER2 negatively affects APP internalization. However, ApoER2 expression stimulates Abeta production by shifting the proportion of APP from the non-rafts to the raft membrane domains, thereby promoting beta-secretase and gamma-secretase mediated amyloidogenic processing and also by incrementing the activity of gamma-secretase.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Alteration of Abeta metabolism-related molecules in predementia induced by AlCl3 and D: -galactose. 19468866

    The purpose of this study was to look for alterations in beta-amyloid peptide (Abeta) metabolism-related molecules in predementia, the early stage of Alzheimer's disease (AD). AlCl(3) (Al) and D: -galactose (D-gal) were used to induce the mouse model for predementia and AD. Protein expression of beta-amyloid (Abeta), beta-secretase (BACE1), neprilysin (NEP), insulin degrading enzyme (IDE) and receptor for advanced glycation end products (RAGE) in the brain was measured. The results indicated that Al + D-gal induced an AD-like behavioral deficit at 90 days. The period from 45 to 75 days showed no significant behavioral deficit, and we tentatively define this as predementia in this model. A significant increase in BACE1 and decreasing NEP characterized days 45-90 in the cortex and hippocampus. However, high Abeta occurred at day 60. IDE increased from day 60 to day 75. There was no change in RAGE. The results suggest that the observed changes in BACE1, NEP and Abeta in predementia might relate to a different stage of the AD-like pathology, which may be developed into useful biomarkers for the diagnosis of very early AD.,
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Altered expression of Abeta metabolism-associated molecules from d-galactose/AlCl(3) induced mouse brain. 19150622

    Cerebral deposition of amyloid-beta peptide (Abeta) is a critical feature of Alzheimer's disease (AD). Either aluminium trichloride (Al) or d-galactose (d-gal) induces Abeta overproduction in rat or mouse brain and has been used to produce models of aging and AD. Here it is shown that mice treated with Al plus d-gal represent a good model of AD with altered expression of Abeta metabolism-associated molecules. The work shows that Al/d-gal causes memory impairment and high Abeta levels in the cortex (Co) and hippocampus (Hi). Then, we found that beta-site APP cleavage enzyme 1 (BACE1) was increased in mouse Co and Hi. Al or Al plus d-gal suppressed mRNA of the low-density lipoprotein receptor-related protein 1(LRP1). d-gal also decreased the LRP expression in Hi, but not in Co. However, Al/d-gal did not affect the receptor for advanced glycation end products (RAGE) expression in mouse brains. Furthermore, Al/d-gal reduced the expression of neprilysin (NEP), but not the insulin degrading enzyme (IDE). This study indicates that Al/d-gal affects the expression of Abeta metabolism-associated molecules that are responsible for Abeta deposition during AD, suggesting that this mouse model can be a useful model for studying the mechanisms and biomarkers of AD and for drug screening.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Increased expression of Abeta degrading enzyme IDE in the cortex of transgenic mice with Alzheimer's disease-like neuropathology. 18455870

    Expression levels of amyloid beta (Abeta)-degrading enzymes, insulin degrading enzyme (IDE) and neprilysin (NEP), were examined in transgenic mice with Alzheimer's disease-like neuropathology. After the development of first Abeta plaques in transgenic mice brain, cortical mRNA and protein levels of IDE were significantly up-regulated in the transgenic mice compared to their non-transgenic littermates. Up-regulation of IDE mRNA-levels occurred in parallel with increased Abeta40 and Abeta42 production. Additionally, a significant positive correlation was observed between protein levels of IDE and full-length amyloid precursor protein (APP) in the cerebral cortex. mRNA and protein levels of NEP were also nominally up-regulated in Tg mice compared to controls. These data may reflect up-regulation of the IDE and possibly of NEP expression in response to the Abeta accumulation.
    문서 타입:
    Reference
    카탈로그 번호:
    AB5458
    제품명:
    Anti-Neprilysin Antibody (Neutral Endopeptidase, Nep)
  • Physiological mouse brain Abeta levels are not related to the phosphorylation state of threonine-668 of Alzheimer's APP. 17183681

    Amyloid-beta peptide species ending at positions 40 and 42 (Abeta40, Abeta42) are generated by the proteolytic processing of the Alzheimer's amyloid precursor protein (APP). Abeta peptides accumulate in the brain early in the course of Alzheimer's disease (AD), especially Abeta42. The cytoplasmic domain of APP regulates intracellular trafficking and metabolism of APP and its carboxyl-terminal fragments (CTFalpha, CTFbeta). The role of protein phosphorylation in general, and that of the phosphorylation state of APP at threonine-668 (Thr668) in particular, has been investigated in detail by several laboratories (including our own). Some investigators have recently proposed that the phosphorylation state of Thr668 plays a pivotal role in governing brain Abeta levels, prompting the current study.In order to evaluate whether the phosphorylation state of Thr668 controlled brain Abeta levels, we studied the levels and subcellular distributions of holoAPP, sAPPalpha, sAPPbeta, CTFalpha, CTFbeta, Abeta40 and Abeta42 in brains from "knock-in" mice in which a non-phosphorylatable alanyl residue had been substituted at position 668, replacing the threonyl residue present in the wild-type protein.The levels and subcellular distributions of holoAPP, sAPPalpha, sAPPbeta, CTFalpha, CTFbeta, Abeta40 and Abeta42 in the brains of Thr668Ala mutant mice were identical to those observed in wild-type mice. These results indicate that, despite speculation to the contrary, the phosphorylation state of APP at Thr668 does not play an obvious role in governing the physiological levels of brain Abeta40 or Abeta42 in vivo.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. 20505094

    Alzheimer's disease (AD), the most prevalent age-related neurodegenerative disorder, is characterized pathologically by the accumulation of beta-amyloid (Abeta) plaques and tau-laden neurofibrillary tangles. Interestingly, up to 50% of AD cases exhibit a third prevalent neuropathology: the aggregation of alpha-synuclein into Lewy bodies. Importantly, the presence of Lewy body pathology in AD is associated with a more aggressive disease course and accelerated cognitive dysfunction. Thus, Abeta, tau, and alpha-synuclein may interact synergistically to promote the accumulation of each other. In this study, we used a genetic approach to generate a model that exhibits the combined pathologies of AD and dementia with Lewy bodies (DLB). To achieve this goal, we introduced a mutant human alpha-synuclein transgene into 3xTg-AD mice. As occurs in human disease, transgenic mice that develop both DLB and AD pathologies (DLB-AD mice) exhibit accelerated cognitive decline associated with a dramatic enhancement of Abeta, tau, and alpha-synuclein pathologies. Our findings also provide additional evidence that the accumulation of alpha-synuclein alone can significantly disrupt cognition. Together, our data support the notion that Abeta, tau, and alpha-synuclein interact in vivo to promote the aggregation and accumulation of each other and accelerate cognitive dysfunction.
    문서 타입:
    Reference
    카탈로그 번호:
    AB5038
    제품명:
    Anti-Synuclein α Antibody