Millipore Sigma Vibrant Logo
 

Putative Neurotransmitter Receptor [PNR]


3 Results 고급 검색  
검색결과 보기
제품 정보 (0)
문서 정보 (3)
웹 페이지 (0)

결과내 검색 검색을 미세조정하려면 아래의 필터를 이용하십시오

찾으시는 것을 발견할 수 없으십니까?
고객 서비스에 연락하십시오

 
문서 검색을 위한 도움이 필요하신가요?
  • CoA나 CoQ, MSDS 검색을 위해 문서 검색기를 이용해 보세요.
  • 사용자 가이드 또는 매뉴얼을 원하시면 고객 서비스팀에 연락주시기 바랍니다.
  • «
  • <
  • 1
  • >
  • »
  • Ethanol and acetaldehyde exposure induces specific epigenetic modifications in the prodynorphin gene promoter in a human neuroblastoma cell line. 21106935

    Ethanol alters neural activity through interaction with multiple neurotransmitters and neuromodulators. The endogenous opioid system seems to play a key role, since the opioid receptor antagonist naltrexone (ReVia®) attenuates craving for alcohol. We recently reported that ethanol and acetaldehyde, the first product of ethanol metabolism, affect transcription of opioid system genes in human SH-SY5Y neuroblastoma cells. In the current study, potential epigenetic mechanisms were investigated to clarify these effects on prodynorphin gene expression. DNA methylation was analyzed by bisulfite pyrosequencing, and chromatin immunoprecipitation was used to assess putative specific histone modifications at the prodynorphin gene promoter. The results demonstrated a temporal relationship between selective chromatin modifications induced by ethanol and acetaldehyde and changes in prodynorphin gene expression quantitated by real-time qPCR. DNA methylation was not altered in any of the experimental conditions used. The epigenetic changes may precede gene transcription, and histone modifications might keep the prodynorphin gene in a poised state for later reactivation. A link has been observed between gene expression alterations and selective epigenetic modulation in the prodynorphin promoter region, demonstrating a specificity of the changes induced by ethanol and acetaldehyde. The latter may be mediating ethanol effects at the genomic level.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • «
  • <
  • 1
  • >
  • »