다음 MAP메이트™는 통합될 수 없습니다: -다른 분석 완충용액이 필요한 MAP메이트™. -인산 특이성 및 총 MAP메이트™ 조합, 예: 총 GSK3β 및 GSK3β(Ser 9). -PanTyr 및 자리 특이성 MAP메이트™, 예: Phospho-EGF 수용체 및 phospho-STAT1(Tyr701). -단일 표적(Akt, STAT3)를 위한 1개 이상의 1 phospho-MAP메이트™. - GAPDH 및 β-Tubulin은 panTyr를 포함하는 키트 또는 MAP메이트™와 통합될 수 없습니다.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
이 제품은 즐겨찾기에 저장되었습니다.
종
패널 유형
선택하신 키트
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
96-Well Plate
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
다른 시약 추가 (MAP메이트 사용을 위해 완충용액과 검출 키트가 필요함)
수량
카탈로그 번호
주문 설명
포장 단위
기재 가격
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
공간 절약 옵션 다수의 키트를 구매하시는 고객은 고용량 저장을 위해 키트 포장을 제거하고 비닐백에 담긴 멀티플레스 분석 구성품을 받아 저장 공간을 절약하도록 선택할 수 있습니다.
이 제품은 즐겨찾기에 저장되었습니다.
해당 제품은 고객님의 카트에 추가되었습니다.
이제 다른 키트를 사용자 지정하거나, 사전 혼합된 키트를 선택하거나, 결재하거나 또는 주문 도구를 종료할 수 있습니다.
Signaling initiated by Class Ia phosphatidylinositol-3-kinases (PI3Ks) is essential for cell proliferation and survival. We discovered a novel protein we call PI3K interacting protein 1 (PIK3IP1) that shares homology with the p85 regulatory PI3K subunit. Using a variety of in vitro and cellbasedassays, we demonstrate that PIK3IP1 directly binds to the p110 catalytic subunit and down modulates PI3K activity. Our studies suggest that PIK3IP1 is a new type of PI3K regulator.
Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-basedassays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA(®) and LanthaScreen(®) technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA(®)) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds.
To simplify the detection of infectious human cytomegalovirus (HCMV), we generated a cell line that produced luciferase in a dose-dependent manner upon HCMV infection. Using this cell line, we identified anti-HCMV compounds from a diverse library of 9,600 compounds. One of them, 1-(3,5-dichloro-4-pyridyl)piperidine-4-carboxamide (DPPC), was effective against HCMV (Towne strain) infection of human lung fibroblast cells at a 50% effective concentration of 2.5 microM. DPPC also inhibited the growth of clinical HCMV isolates and guinea pig and mouse cytomegaloviruses. Experiments using various time frames for treatment of the cells with DPPC demonstrated that DPPC was effective during the first 24 h after HCMV infection. DPPC treatment decreased not only viral DNA replication but also IE1 and IE2 expression at mRNA and protein levels in the HCMV-infected cells. However, DPPC did not inhibit the attachment of HCMV particles to the cell surface. DPPC is a unique compound that targets the very early phase of cytomegalovirus infection, probably by disrupting a pathway that is important after viral entry but before immediate-early gene expression.
Overexpression of the transmembrane tyrosine kinases Her2 and EGFR is associated with aggressive malignancies, and several therapeutic strategies targeting the two receptors are now in various stages of clinical development. Most of the known agents block the activation or inhibit the activity of the kinases; however, a more significant therapeutic outcome may result from degrading these oncoproteins. Here, we report the development of a microtiter cell-based assay that sensitively detects cellular levels of Her2 and EGFR. The assay is useful in identifying small molecules that alter cellular levels of these kinases and in quantifying their effect. The method gives results comparable to Western blot, but it is faster, less labor intensive, and amenable to high throughput.
Myotonic dystrophy type 1 (DM1) is a genetic disorder characterized by muscle wasting, myotonia, cataracts, cardiac arrhythmia, hyperinsulinism and intellectual deficits, and is caused by expansion of a CTG repeat in the 3'UTR of the Dystrophia Myotonica-Protein Kinase (DMPK) gene. The DMPK transcripts containing expanded CUG repeats accumulate in nuclear foci and ultimately cause mis-splicing of secondary genes through the dysregulation of RNA-binding proteins including Muscleblind 1 (MBNL1) and CUG binding protein 1 (CUGBP1). Correction of mis-splicing of genes such as the Skeletal muscle-specific chloride channel 1 (CLCN1), Cardiac troponin T (TNNT2), Insulin receptor (INSR) and Sarcoplasmic/endoplasmic reticulum Ca(2+)ATPase 1 (SERCA1) may alleviate some of the symptoms of DM1; hence identification of small molecule modulators is an important step towards a therapy for DM1 patients. Here we describe the generation of immortalized myoblast cell lines derived from healthy (DMPK CTG(5)) and DM1 patient (DMPK CTG(1000)) fibroblasts by constitutive overexpression of human telomerase reverse transcriptase (hTERT) and inducible overexpression of the Myoblast determination factor (MYOD). MBNL1-containing nuclear foci, mis-splicing events and defective myotube differentiation defects characteristic of DM1 were observed in these cells. A CLCN1 luciferase minigene construct (CLCN1-luc) was stably introduced to monitor intron 2 retention in the DM1 cellular context (a reported splicing defect in DM1). The assay was validated by performing a high-throughput screen (HTS) of ~13,000 low molecular weight compounds against the CLCN1-luc DM1 myoblast cell line, providing an ideal system for conducting HTS to better understand and treat DM1.
N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune neurological disease, diagnosed by a specific autoantibody against NMDAR. Antibody testing using commercially available cell-basedassays (CBA) or immunohistochemistry on rat brain tissue has proven high specificity and sensitivity. Here we compare an immunofluorescence live CBA to a flow cytometry (FACS) based assay to detect NMDAR antibodies by their binding to the surface of HEK293A cells functionally expressing NMDAR. Both assays were first established using a discovery group of 76 individuals and then validated in a group of 32 patients in a blinded manner. In the CBA, 23 of 23 patients with NMDAR encephalitis were positive for NMDAR antibodies and 0 of 85 controls (32 healthy controls and 53 patients with other neurological diseases), resulting in a sensitivity and specificity of 100% (95% confidence intervals (CI) 85.1-100.0 and 95.7-100.0, respectively). The FACS based assay detected NMDAR antibodies in 20 of 23 patients and in 0 of 85 controls. Therefore, with an equally high specificity (95% CI 95.7-100.0) the sensitivity of the FACS based assay was 87% (95% CI 66.4-97.2). Comparing antibody titers from CBA with delta median fluorescence intensities from FACS showed a high concordance (kappa = 0.943, pless than 0.0001) and correlation (r = 0.697, pless than 0.0001). In conclusion, evaluation of the FACS based assay revealed a lower sensitivity and high inter-assay variation, making the CBA a more reliable detection method.
Aggregation of alpha-synuclein (alpha-syn), a process that generates oligomeric intermediates, is a common pathological feature of several neurodegenerative disorders. Despite the potential importance of the oligomeric alpha-syn intermediates in neuron function, their biochemical properties and pathobiological functions in vivo remain vastly unknown. Here we used two-dimensional analytical separation and an array of biochemical and cell-basedassays to characterize alpha-syn oligomers that are present in the nervous system of A53T alpha-syn transgenic mice. The most prominent species identified were 53 A detergent-soluble oligomers, which preceded neurological symptom onset, and were found at equivalent amounts in regions containing alpha-syn inclusions as well as histologically unaffected regions. These oligomers were resistant to SDS, heat, and urea but were sensitive to proteinase-K digestion. Although the oligomers shared similar basic biochemical properties, those obtained from inclusion-bearing regions were prominently reactive to antibodies that recognize oxidized alpha-syn oligomers, significantly accelerated aggregation of alpha-syn in vitro, and caused primary cortical neuron degeneration. In contrast, oligomers obtained from non-inclusion-bearing regions were not toxic and delayed the in vitro formation of alpha-syn fibrils. These data indicate that specific conformations of alpha-syn oligomers are present in distinct brain regions of A53T alpha-syn transgenic mice. The contribution of these oligomers to the development of neuron dysfunction appears to be independent of their absolute quantities and basic biochemical properties but is dictated by the composition and conformation of the intermediates as well as unrecognized brain-region-specific intrinsic factors.
The mitotic checkpoint (also known as the spindle assembly checkpoint) prevents premature anaphase onset through generation of an inhibitor of the E3 ubiquitin ligase APC/C, whose ubiquitination of cyclin B and securin targets them for degradation. Combining in vitro reconstitution and cell-basedassays, we now identify dual mechanisms through which Bub3 promotes mitotic checkpoint signaling. Bub3 enhances signaling at unattached kinetochores not only by facilitating binding of BubR1 but also by enhancing Cdc20 recruitment to kinetochores mediated by BubR1's internal Cdc20 binding site. Downstream of kinetochore-produced complexes, Bub3 promotes binding of BubR1's conserved, amino terminal Cdc20 binding domain to a site in Cdc20 that becomes exposed by initial Mad2 binding. This latter Bub3-stimulated event generates the final mitotic checkpoint complex of Bub3-BubR1-Cdc20 that selectively inhibits ubiquitination of securin and cyclin B by APC/C(Cdc20). Thus, Bub3 promotes two distinct BubR1-Cdc20 interactions, involving each of the two Cdc20 binding sites of BubR1 and acting at unattached kinetochores or cytoplasmically, respectively, to facilitate production of the mitotic checkpoint inhibitor.