Millipore Sigma Vibrant Logo
 

pmca


30 Results 고급 검색  
검색결과 보기
문서 정보 (28)
웹 페이지 (0)

결과내 검색 검색을 미세조정하려면 아래의 필터를 이용하십시오

찾으시는 것을 발견할 수 없으십니까?
고객 서비스에 연락하십시오

 
문서 검색을 위한 도움이 필요하신가요?
  • CoA나 CoQ, MSDS 검색을 위해 문서 검색기를 이용해 보세요.
  • 사용자 가이드 또는 매뉴얼을 원하시면 고객 서비스팀에 연락주시기 바랍니다.
  • Fast plasma membrane calcium pump PMCA2a concentrates in GABAergic terminals in the adult rat brain. 19025983

    The plasma membrane Ca(2+)-ATPases (PMCA) represent the major high-affinity Ca(2+) extrusion system in the brain. PMCAs comprise four isoforms and over 20 splice variants. Their different functional properties may permit different PMCA splice variants to accommodate different kinds of local [Ca(2+)] transients, but for a specific PMCA to play a unique role in local Ca(2+) handling it must be targeted to the appropriate subcellular compartment. We used immunohistochemistry to study the spatial distribution of PMCA2a-one of the two major carboxyl-terminal splice variants of PMCA2-in the adult rat brain, testing whether this isoform, with especially high basal activity, is targeted to specific subcellular compartments. In striking contrast to the widespread distribution of PMCA2 as a whole, we found that PMCA2a is largely restricted to parvalbumin-positive inhibitory presynaptic terminals throughout the brain. The only major exception to this targeting pattern was in the cerebellar cortex, where PMCA2a also concentrates postsynaptically, in the spines of Purkinje cells. We propose that the fast Ca(2+) activation kinetics and high V(max) of PMCA2a make this pump especially suited for rapid clearance of presynaptic Ca(2+) in fast-spiking inhibitory nerve terminals, which face severe transient calcium loads.
    문서 타입:
    Reference
    카탈로그 번호:
    AG208
    제품명:
    Vesicular Glutamate Transporter 1, control peptide for AB5905
  • Plasma membrane Ca(2+)-ATPase associates with the cytoskeleton in activated platelets through a PDZ-binding domain. 11278574

    The plasma membrane Ca(2+)-ATPase (PMCA) plays an essential role in maintaining low cytosolic Ca(2+) in resting platelets. During platelet activation PMCA is phosphorylated transiently on tyrosine residues resulting in inhibition of the pump that enhances elevation of Ca(2+). Tyrosine phosphorylation of many proteins during platelet activation results in their association with the cytoskeleton. Consequently, in the present study we asked if PMCA interacts with the platelet cytoskeleton. We observed that very little PMCA is associated with the cytoskeleton in resting platelets but that approximately 80% of total PMCA (PMCA1b + PMCA4b) is redistributed to the cytoskeleton upon activation with thrombin. Tyrosine phosphorylation of PMCA during activation was not associated with the redistribution because tyrosine-phosphorylated PMCA was not translocated specifically to the cytoskeleton. Because PMCA b-splice isoforms have C-terminal PSD-95/Dlg/ZO-1 homology domain (PDZ)-binding domains, a C-terminal peptide was used to disrupt potential PDZ domain interactions. Activation of saponin-permeabilized platelets in the presence of the peptide led to a significant decrease of PMCA in the cytoskeleton. PMCA associated with the cytoskeleton retained Ca(2+)-ATPase activity. These results suggest that during activation active PMCA is recruited to the cytoskeleton by interaction with PDZ domains and that this association provides a microenvironment with a reduced Ca(2+) concentration.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple