Millipore Sigma Vibrant Logo
 

seoul-bestmassage3.xyz


248 Results 고급 검색  
검색결과 보기
제품 정보 (0)
문서 정보 (248)
웹 페이지 (0)

선택하신 항목

  • SourceType

  • Reference

결과내 검색 검색을 미세조정하려면 아래의 필터를 이용하십시오

찾으시는 것을 발견할 수 없으십니까?
고객 서비스에 연락하십시오

 
문서 검색을 위한 도움이 필요하신가요?
  • CoA나 CoQ, MSDS 검색을 위해 문서 검색기를 이용해 보세요.
  • 사용자 가이드 또는 매뉴얼을 원하시면 고객 서비스팀에 연락주시기 바랍니다.
  • Cdc42, Rac1, and their effector IQGAP1 as molecular switches for cadherin-mediated cell-cell adhesion. 10448058

    Cell-cell adhesion is a dynamic process in various cellular and developmental situations. Cadherins, well-known Ca(2+)-dependent adhesion molecules, are thought to play a major role in the regulation of cell-cell adhesion. However, the molecular mechanism underlying the rearrangement of cadherin-mediated cell-cell adhesion is largely unknown. Cdc42 and Rac1, belonging to the Rho small GTPase family, have recently been shown to be involved in the regulation of cell-cell adhesion. In addition, IQGAP1, an effector for Cdc42 and Rac1, has been shown to regulate the cadherin function through interaction with beta-catenin, a molecule associated with cadherin. In this review, we will summarize the mode of action of Cdc42 and Rac1 as well as IQGAP1 as molecular switches for the cadherin function, and then discuss physiological processes in which the Cdc42/Rac1/IQGAP1 system may be involved.
    문서 타입:
    Reference
    카탈로그 번호:
    05-504
    제품명:
    Anti-IQGAP1 Antibody, clone AF4
  • The Rac1 splice form Rac1b promotes K-ras-induced lung tumorigenesis. 22430205

    Rac1b, an alternative splice form of Rac1, has been previously shown to be upregulated in colon and breast cancer cells, suggesting an oncogenic role for Rac1b in these cancers. Our analysis of NSCLC tumor and matched normal tissue samples indicates Rac1b is upregulated in a significant fraction of lung tumors in correlation with mutational status of K-ras. To directly assess the oncogenic potential of Rac1b in vivo, we employed a mouse model of lung adenocarcinoma, in which the expression of Rac1b can be conditionally activated specifically in the lung. Although expression of Rac1b alone is insufficient to drive tumor initiation, the expression of Rac1b synergizes with an oncogenic allele of K-ras resulting in increased cellular proliferation and accelerated tumor growth. Finally, we show that in contrast to our previous findings demonstrating a requirement for Rac1 in K-ras-driven cell proliferation, Rac1b is not required in this context. Given the partially overlapping spectrum of downstream effectors regulated by Rac1 and Rac1b, our findings further delineate the signaling pathways downstream of Rac1 that are required for K-ras driven tumorigenesis.
    문서 타입:
    Reference
    카탈로그 번호:
    05-389
    제품명:
    Anti-Rac1 Antibody, clone 23A8
  • Rac1 acts in conjunction with Nedd4 and dishevelled-1 to promote maturation of cell-cell contacts. 22467858

    The Rho-GTPase Rac1 promotes actin polymerization and membrane protrusion that mediate initial contact and subsequent maturation of cell-cell junctions. Here we report that Rac1 associates with the ubiquitin-protein ligase neural precursor cell expressed developmentally down-regulated 4 (Nedd4). This interaction requires the hypervariable C-terminal domain of Rac1 and the WW domains of Nedd4. Activated Rac1 colocalises with endogenous Nedd4 at epithelial cell-cell contacts. Reduction of Nedd4 expression by shRNA results in reduced transepithelial electrical resistance (TER) and concomitant changes in the distribution of adherens and tight junction markers. Conversely, expression of Nedd4 promotes TER, suggesting that Nedd4 cooperates with Rac1 in the induction of junctional maturation. We found that Nedd4, but not Nedd4-2, mediates the ubiquitylation and degradation of the adapter protein dishevelled-1 (Dvl1), the expression of which negatively regulates cell-cell contact. Nedd4-mediated ubiquitylation requires its binding to the C-terminal domain of Dvl1, comprising the DEP domain, and targets an N-terminal lysine-rich region upstream of the Dvl1 DIX domain. We found that endogenous Rac1 colocalises with endogenous Dvl1 in intracellular puncta as well as on cell-cell junctions. Finally, activated Rac1 was found to stimulate Nedd4 activity, resulting in increased ubiquitylation of Dvl1. Together, these data reveal a novel Rac1-dependent signalling pathway that, through Nedd4-mediated ubiquitylation of Dvl1, stimulates the maturation of epithelial cell-cell contacts.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Alsin/Rac1 signaling controls survival and growth of spinal motoneurons. 16802292

    OBJECTIVE: Recessive mutations in alsin, a guanine-nucleotide exchange factor for the GTPases Rab5 and Rac1, cause juvenile amyotrophic lateral sclerosis (ALS2) and related motoneuron disorders. Alsin function in motoneurons remained unclear because alsin knock-out mice do not develop overt signs of motoneuron degeneration. METHODS: To generate an alsin loss-of-function model in an ALS-relevant cell type, we developed a new small interfering RNA electroporation technique that allows efficient knock down of alsin in embryonic rat spinal motoneurons. RESULTS: After small interfering RNA-mediated alsin knockdown, cultured motoneurons displayed a reduced apparent size of EEA1-labeled early endosomes and an increased intracellular accumulation of transferrin and L1CAM. Alsin knockdown induced cell death in 32 to 48% of motoneurons and significantly inhibited axon growth in the surviving neurons. Both cellular phenotypes were mimicked by expression of a dominant-negative Rac1 mutant and were completely blocked by expression of a constitutively active Rac1 mutant. Expression of dominant-negative or constitutively active forms of Rab5 had no such effects. INTERPRETATION: Our data demonstrate that alsin controls the growth and survival of motoneurons in a Rac1-dependant manner. The strategy reported here illustrates how small interfering RNA electroporation can be used to generate cellular models of neurodegenerative disease involving a loss-of-function mechanism.
    문서 타입:
    Reference
    카탈로그 번호:
    AB1987
    제품명:
    Anti-Neurofilament M (145 kDa) Antibody, CT
  • Cardiac Rac1 overexpression in mice creates a substrate for atrial arrhythmias characterized by structural remodelling. 20211865

    The small GTPase Rac1 seems to play a role in the pathogenesis of atrial fibrillation (AF). The aim of the present study was to characterize the effects of Rac1 overexpression on atrial electrophysiology.In mice with cardiac overexpression of constitutively active Rac1 (RacET), statin-treated RacET, and wild-type controls (age 6 months), conduction in the right and left atrium (RA and LA) was mapped epicardially. The atrial effective refractory period (AERP) was determined and inducibility of atrial arrhythmias was tested. Action potentials were recorded in isolated cells. Left ventricular function was measured by pressure-volume analysis. Five of 11 RacET hearts showed spontaneous or inducible atrial tachyarrhythmias vs. 0 of 9 controls (P less than 0.05). In RacET, the P-wave duration was significantly longer (26.8 +/- 2.1 vs. 16.7 +/- 1.1 ms, P = 0.001) as was total atrial activation time (RA: 13.6 +/- 4.4 vs. 3.2 +/- 0.5 ms; LA: 7.1 +/- 1.2 vs. 2.2 +/- 0.3 ms, P less than 0.01). Prolonged local conduction times occurred more often in RacET (RA: 24.4 +/- 3.8 vs. 2.7 +/- 2.1%; LA: 19.1 +/- 6.3 vs. 1.2 +/- 0.7%, P less than 0.01). The AERP and action potential duration did not differ significantly between both groups. RacET demonstrated significant atrial fibrosis but only moderate systolic heart failure. RacET and statin-treated RacET were not significantly different regarding atrial electrophysiology.The substrate for atrial arrhythmias in mice with Rac1 overexpression is characterized by conduction disturbances and atrial fibrosis. Electrical remodelling (i.e. a shortening of AERP) does not play a role. Statin treatment cannot prevent the structural and electrophysiological effects of pronounced Rac1 overexpression in this model.
    문서 타입:
    Reference
    카탈로그 번호:
    05-389
    제품명:
    Anti-Rac1 Antibody, clone 23A8
  • Rac1 selective activation improves retina ganglion cell survival and regeneration. 23734197

    In adult mammals, after optic nerve injury, retinal ganglion cells (RGCs) do not regenerate their axons and most of them die by apoptosis within a few days. Recently, several strategies that activate neuronal intracellular pathways were proposed to prevent such degenerative processes. The rho-related small GTPase Rac1 is part of a complex, still not fully understood, intracellular signaling network, mediating in neurons many effects, including axon growth and cell survival. However, its role in neuronal survival and regeneration in vivo has not yet been properly investigated. To address this point we intravitreally injected selective cell-penetrating Rac1 mutants after optic nerve crush and studied the effect on RGC survival and axonal regeneration. We injected two well-characterized L61 constitutively active Tat-Rac1 fusion protein mutants, in which a second F37A or Y40C mutation confers selectivity in downstream signaling pathways. Results showed that, 15 days after crush, both mutants were able to improve survival and to prevent dendrite degeneration, while the one harboring the F37A mutation also improved axonal regeneration. The treatment with F37A mutant for one month did not improve the axonal elongation respect to 15 days. Furthermore, we found an increase of Pak1 T212 phosphorylation and ERK1/2 expression in RGCs after F37A treatment, whereas ERK1/2 was more activated in glial cells after Y40C administration. Our data suggest that the selective activation of distinct Rac1-dependent pathways could represent a therapeutic strategy to counteract neuronal degenerative processes in the retina.
    문서 타입:
    Reference
    카탈로그 번호:
    MAB360
    제품명:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Rac1 mediates collapsin-1-induced growth cone collapse. 9236236

    Collapsin-1 or semaphorin III(D) inhibits axonal outgrowth by collapsing the lamellipodial and filopodial structures of the neuronal growth cones. Because growth cone collapse is associated with actin depolymerization, we considered whether small GTP-binding proteins of the rho subfamily might participate in collapsin-1 signal transduction. Recombinant rho, rac1, and cdc42 proteins were triturated into embryonic chick (DRG) neurons. Constitutively active rac1 increases the proportion of collapsed growth cones, and dominant negative rac1 inhibits collapsin-1-induced collapse of growth cones and collapsin-1 inhibition of neurite outgrowth. DRG neurons treated with dominant negative rac1 remain sensitive to myelin-induced growth cone collapse. Similar mutants of cdc42 do not alter growth cone structure, neurite elongation, or collapsin-1 sensitivity. Whereas the addition of activated rho has no effect, the inhibition of rho with Clostridium botulinum C3 transferase stimulates the outgrowth of DRG neurites. C3 transferase-treated growth cones exhibit little or no lamellipodial spreading and are minimally responsive to collapsin-1 and myelin. These data demonstrate a prominent role for rho and rac1 in modulating growth cone motility and indicate that rac1 may mediate collapsin-1 action.
    문서 타입:
    Reference
    카탈로그 번호:
    05-389
    제품명:
    Anti-Rac1 Antibody, clone 23A8
  • Rac1 plays an essential role in axon growth and guidance and in neuronal survival in the central and peripheral nervous systems. 26395878

    Rac1 is a critical regulator of cytoskeletal dynamics in multiple cell types. In the nervous system, it has been implicated in the control of cell proliferation, neuronal migration, and axon development.To systematically investigate the role of Rac1 in axon growth and guidance in the developing nervous system, we have examined the phenotypes associated with deleting Rac1 in the embryonic mouse forebrain, in cranial and spinal motor neurons, in cranial sensory and dorsal root ganglion neurons, and in the retina. We observe a widespread requirement for Rac1 in axon growth and guidance and a cell-autonomous defect in axon growth in Rac1 (-/-) motor neurons in culture. Neuronal death, presumably a secondary consequence of the axon growth and/or guidance defects, was observed in multiple locations. Following deletion of Rac1 in the forebrain, thalamocortical axons were misrouted inferiorly, with the majority projecting to the contralateral thalamus and a minority projecting ipsilaterally to the ventral cortex, a pattern of misrouting that is indistinguishable from the pattern previously observed in Frizzled3 (-/-) and Celsr3 (-/-) forebrains. In the limbs, motor-neuron-specific deletion of Rac1 produced a distinctive stalling of axons within the dorsal nerve of the hindlimb but a much milder loss of axons in the ventral hindlimb and forelimb nerves, a pattern that is virtually identical to the one previously observed in Frizzled3 (-/-) limbs.The similarities in axon growth and guidance phenotypes caused by Rac1, Frizzled3, and Celsr3 loss-of-function mutations suggest a mechanistic connection between tissue polarity/planar cell polarity signaling and Rac1-dependent cytoskeletal regulation.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple
  • Rac1 GTPase-deficient mouse lens exhibits defects in shape, suture formation, fiber cell migration and survival. 21945075

    Morphogenesis and shape of the ocular lens depend on epithelial cell elongation and differentiation into fiber cells, followed by the symmetric and compact organization of fiber cells within an enclosed extracellular matrix-enriched elastic capsule. The cellular mechanisms orchestrating these different events however, remain obscure. We investigated the role of the Rac1 GTPase in these processes by targeted deletion of expression using the conditional gene knockout (cKO) approach. Rac1 cKO mice were derived from two different Cre (Le-Cre and MLR-10) transgenic mice in which lens-specific Cre expression starts at embryonic day 8.75 and 10.5, respectively, in both the lens epithelium and fiber cells. The Le-Cre/Rac1 cKO mice exhibited an early-onset (E12.5) and severe lens phenotype compared to the MLR-10/Rac1 cKO (E15.5) mice. While the Le-Cre/Rac1 cKO lenses displayed delayed primary fiber cell elongation, lenses from both Rac1 cKO strains were characterized by abnormal shape, impaired secondary fiber cell migration, sutural defects and thinning of the posterior capsule which often led to rupture. Lens fiber cell N-cadherin/β-catenin/Rap1/Nectin-based cell-cell junction formation and WAVE-2/Abi-2/Nap1-regulated actin polymerization were impaired in the Rac1 deficient mice. Additionally, the Rac1 cKO lenses were characterized by a shortened epithelial sheet, reduced levels of extracellular matrix (ECM) proteins and increased apoptosis. Taken together, these data uncover the essential role of Rac1 GTPase activity in establishment and maintenance of lens shape, suture formation and capsule integrity, and in fiber cell migration, adhesion and survival, via regulation of actin cytoskeletal dynamics, cell adhesive interactions and ECM turnover.
    문서 타입:
    Reference
    카탈로그 번호:
    04-1109
  • Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. 21464391

    The epithelial Na(+) channel (ENaC) is an essential channel responsible for Na(+) reabsorption in the aldosterone-sensitive distal nephron. Consequently, ENaC is a major effector impacting systemic blood volume and pressure. We have shown recently that Rac1 increases ENaC activity, whereas Cdc42 fails to change channel activity. Here we tested whether Rac1 signaling plays a physiological role in modulating ENaC in native tissue and polarized epithelial cells. We found that Rac1 inhibitor NSC23766 markedly decreased ENaC activity in freshly isolated collecting ducts. Knockdown of Rac1 in native principal cells decreased ENaC-mediated sodium reabsorption and the number of channels at the apical plasma membrane. Members of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in the control of the actin cytoskeleton. N-WASP functions downstream of Cdc42, whereas WAVEs are effectors of Rac1 activity. N-WASP and all 3 isoforms of WAVE significantly increased ENaC activity when coexpressed in Chinese hamster ovary cells. However, wiskostatin, an inhibitor of N-WASP, had no effect on ENaC activity. Immunoblotting demonstrated the presence of WAVE1 and WAVE2 and absence of N-WASP and WAVE3 in mpkCCD(c14) and M-1 principal cells. Immunohistochemistry analysis also revealed localization of WAVE1 and WAVE2 but not N-WASP in the cortical collecting duct of Sprague-Dawley rat kidneys. Moreover, patch clamp analysis revealed that Rac1 and WAVE1/2 are parts of the same signaling pathway with respect to activation of ENaC. Thus, our findings suggest that Rac1 is essential for ENaC activity and regulates the channel via WAVE proteins.
    문서 타입:
    Reference
    카탈로그 번호:
    Multiple
    제품명:
    Multiple