Skip to Content
Merck

8.08260

Trifluoroacetic acid

for synthesis

Synonym(s):

TFA

Sign In to View Organizational & Contract Pricing.

Select a Size



About This Item

Linear Formula:
CF3COOH
CAS Number:
Molecular Weight:
114.02
UNSPSC Code:
12352106
NACRES:
NA.22
EC Index Number:
200-929-3
MDL number:
Beilstein/REAXYS Number:
742035
grade:
synthesis grade
assay:
≥99% (acidimetric)
bp:
72.4 °C (lit.)
vapor pressure:
97.5 mmHg ( 20 °C)

Product Name

Trifluoroacetic acid, for synthesis

InChI

1S/C2HF3O2/c3-2(4,5)1(6)7/h(H,6,7)

SMILES string

OC(C(F)(F)F)=O

InChI key

DTQVDTLACAAQTR-UHFFFAOYSA-N

grade

synthesis grade

vapor density

3.9 (vs air)

vapor pressure

97.5 mmHg ( 20 °C)

assay

≥99% (acidimetric)

form

liquid

dilution

(for synthesis)

refractive index

n20/D 1.3 (lit.)

pH

1 (10 g/L in H2O)

bp

72.4 °C (lit.)

mp

−15.4 °C (lit.)

solubility

soluble 10 g/mL

density

1.489 g/mL at 20 °C (lit.)

storage temp.

2-30°C

Quality Level

Looking for similar products? Visit Product Comparison Guide

Related Categories

Analysis Note

Assay (acidimetric): ≥ 99.0 %
Density (d 20 °C/ 4 °C): 1.487 - 1.490
Identity (IR): passes test

Application

Trifluoroacetic acid can be used as a catalyst

  • In the direct conversion of cyclohexanone to caprolactam using acetonitrile as the additive.
  • In the synthesis of 1,2,4,5-tetrasubstituted imidazoles by four-component condensation of benzil, aldehydes, amines, and ammonium acetate.
Trifluoroacetic acid can also be used
  • In the synthesis of d-α-Tterpineo from d-limonene by Markovnikov addition followed by hydrolysis.

Features and Benefits

Trifluoroacetic acid can be used as a catalyst due to its
  • High acidity
  • Easy elimination
  • Good solubility in organic solvent and in water.

General description

Trifluoroacetic acid is widely used in organic synthesis as a solvent, catalyst and reagent. It is a strong acid and low boiling point reagent. It can be used as a catalyst for a variety of reactions such as rearrangements, functional group deprotections, oxidations, reductions, condensations, hydroarylations and trifluoromethylations.

pictograms

CorrosionExclamation mark

signalword

Danger

Hazard Classifications

Acute Tox. 4 Inhalation - Aquatic Chronic 3 - Eye Dam. 1 - Skin Corr. 1A

Storage Class

8A - Combustible corrosive hazardous materials

wgk

WGK 2

flash_point_f

>212.0 °F - Pensky-Martens closed cup

flash_point_c

> 100 °C - Pensky-Martens closed cup


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Trifluoroacetic acid as an efficient catalyst for one-pot, four-component synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles under microwave-assisted, solvent-free conditions
Mohammadizadeh MR, et al.
Synthetic Communications, 39(18), 3232-3242 (2009)
Trifluoroacetic acid: Uses and recent applications in organic synthesis
Lopez SE, et al.
Journal of Fluorine Chemistry, 156, 73-100 (2013)
A Practical Synthesis of?d-?-Terpineol via Markovnikov Addition of?d-Limonene Using Trifluoroacetic Acid
Yuasa Y, et al.
Organic Process Research & Development, 10(6), 1231-1232 (2006)

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service