Millipore Sigma Vibrant Logo
 

mouse+anti+gapdh


21 Results Advanced Search  
Showing
Products (0)
Documents (20)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Human and mouse microglia express connexin36, and functional gap junctions are formed between rodent microglia and neurons. 16211561

    Microglia, the tissue macrophages of the central nervous system (CNS), intimately interact with neurons physically and through soluble factors that can affect microglial activation state and neuronal survival and physiology. We report here a new mechanism of interaction between these cells, provided by the formation of gap junctions composed of connexin (Cx) 36. Among eight Cxs tested, expression of Cx36 mRNA and protein was found in microglial cultures prepared from human and mouse, and Cx45 mRNA was found in mouse microglial cultures. Electrophysiological measurements found coupling between one-third of human or mouse microglial pairs that averaged below 30 pico-Siemens and displayed electrical properties consistent with Cx36 gap junctions. Importantly, similar frequency of low-strength electrical coupling was also obtained between microglia and neurons in cocultures prepared from neocortical or hippocampal rodent tissue. Lucifer yellow dye coupling between neurons and microglia was observed in 4% of pairs tested, consistent with the low strength and incidence of electrical coupling. Cx36 expression level and/or the degree of coupling between microglia did not significantly change in the presence of activating agents, including lipopolysaccharide, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha, except for some reduction of Cx36 protein when exposed to the latter two agents. Our findings that intercellular coupling occurs between neuronal and microglial populations through Cx36 gap junctions have potentially important implications for normal neural physiology and microglial responses in neuronopathology in the mammalian CNS.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3045
    Product Catalog Name:
    Anti-Connexin 35/36 Antibody, clone 8F6.2
  • Differing in vitro survival dependency of mouse and rat NG2+ oligodendroglial progenitor cells. 19908280

    NG2 chondroitin sulfate proteoglycan is a surface marker of oligodendroglial progenitor cells (OPCs) in various species. In contrast to well-studied rat OPCs, however, we found that purified mouse NG2 surface positive cells (NG2(+) cells) require additional activation of cyclic AMP (cAMP) signaling for survival in a medium containing 30% B104 neuroblastoma conditioned medium supplemented with fibroblast growth factor-2 (B104CM+FGF2), whereas B104CM+FGF2 alone is sufficient for survival and selective proliferation of rat OPCs. After induction of in vitro differentiation, more than 90% of mouse NG2(+) cells became O4-positive, and a majority expressed myelin basic protein by 5 day of differentiation, which confirmed the identity of isolated mouse NG2(+) cells as OPCs. In comparison to rat OPCs, mouse OPCs in B104CM+FGF2 were less motile, and demonstrated lower basal phosphorylation levels of ERK1/2 and cAMP response element-binding protein (CREB) and a higher incidence of apoptosis mediated by the intrinsic pathway. Transient up-regulation of cAMP-CREB signaling partially inhibited apoptosis of mouse OPCs independently of the ERK pathway. This study demonstrates a difference in trophic requirements between mouse and rat OPCs, with an essential role for cAMP signaling to preserve viability of mouse OPCs. (c) 2009 Wiley-Liss, Inc.
    Document Type:
    Reference
    Product Catalog Number:
    AB5320
    Product Catalog Name:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Tumor-derived tissue factor activates coagulation and enhances thrombosis in a mouse xenograft model of human pancreatic cancer. 22547577

    Cancer patients often have an activated clotting system and are at increased risk for venous thrombosis. In the present study, we analyzed tissue factor (TF) expression in 4 different human pancreatic tumor cell lines for the purpose of producing derivative tumors in vivo. We found that 2 of the lines expressed TF and released TF-positive microparticles (MPs) into the culture medium. The majority of TF protein in the culture medium was associated with MPs. Only TF-positive cell lines activated coagulation in nude mice, and this activation was abolished by an anti-human TF Ab. Of the 2 TF-positive lines, only one produced detectable levels of human MP TF activity in the plasma when grown orthotopically in nude mice. Surprisingly, less than 5% of human TF protein in plasma from tumor-bearing mice was associated with MPs. Mice with TF-positive tumors and elevated levels of circulating TF-positive MPs had increased thrombosis in a saphenous vein model. In contrast, we observed no difference in thrombus weight between tumor-bearing and control mice in an inferior vena cava stenosis model. The results of the present study using a xenograft mouse model suggest that tumor TF activates coagulation, whereas TF on circulating MPs may trigger venous thrombosis.
    Document Type:
    Reference
    Product Catalog Number:
    AP113F
    Product Catalog Name:
    Goat Anti-Human IgG Antibody, Fc, FITC conjugate
  • Distribution of RGS9-2 in neurons of the mouse striatum. 19912469

    Regulators of G protein signaling (RGS) proteins negatively modulate G protein-coupled receptor (GPCR) signaling activity by accelerating G protein hydrolysis of GTP, hastening pathway shutoff. A wealth of data from cell culture experiments using exogenously expressed proteins indicates that RGS9 and other RGS proteins have the potential to down-regulate a significant number of pathways. We have used an array of biochemical and tissue staining techniques to examine the subcellular localization and membrane binding characteristics of endogenous RGS9-2 and known binding partners in rodent striatum and tissue homogenates. A small fraction of RGS9-2 is present in the soluble cytoplasmic fraction, whereas the majority is present primarily associated with the plasma membrane and structures insoluble in non-ionic detergents that efficiently extract the vast majority of its binding partners, R7BP and G(beta5). It is specifically excluded from the cell nucleus in mouse striatal tissue. In cultured striatal neurons, RGS9-2 is found at extrasynaptic sites primarily along the dendritic shaft near the spine neck. Heterogeneity in RGS9-2 detergent solubility along with its unique subcellular localization suggests that its mechanism of membrane anchoring and localization is complex and likely involves additional proteins beside R7BP. An important nuclear function for RGS9-2 seems unlikely.
    Document Type:
    Reference
    Product Catalog Number:
    05-369
    Product Catalog Name:
    Anti-Na+/K+ ATPase α-1 Antibody, clone C464.6
  • RNA interference improves motor and neuropathological abnormalities in a Huntington's disease mouse model. 15811941

    Huntington's disease (HD) is a fatal, dominant neurogenetic disorder. HD results from polyglutamine repeat expansion (CAG codon, Q) in exon 1 of HD, conferring a toxic gain of function on the protein huntingtin (htt). Currently, no preventative treatment exists for HD. RNA interference (RNAi) has emerged as a potential therapeutic tool for treating dominant diseases by directly reducing disease gene expression. Here, we show that RNAi directed against mutant human htt reduced htt mRNA and protein expression in cell culture and in HD mouse brain. Importantly, htt gene silencing improved behavioral and neuropathological abnormalities associated with HD. Our data provide support for the further development of RNAi for HD therapy.
    Document Type:
    Reference
    Product Catalog Number:
    MAB2166
    Product Catalog Name:
    Anti-Huntingtin Protein Antibody, a.a. 181-810, clone 1HU-4C8
  • Cholinergic neuronal defect without cell loss in Huntington's disease. 16987871

    Huntington's disease (HD) is a neurodegenerative disorder caused by a CAG-repeat expansion in the huntingtin (IT15) gene. The striatum is one of the regions most affected by neurodegeneration, resulting in the loss of the medium-sized spiny neurons. Traditionally, the large cholinergic striatal interneurons are believed to be spared. Recent studies demonstrate that neuronal dysfunction without cell death also plays an important role in early and mid-stages of the disease. Here, we report that cholinergic transmission is affected in a HD transgenic mouse model (R6/1) and in tissues from HD patients. Stereological analysis shows no loss of cholinergic neurons in the striatum or septum in R6/1 mice. In contrast, the levels of mRNA and protein for vesicular acetylcholine transporter (VAChT) and choline acetyltransferase (ChAT) are decreased in the striatum and cortex, and acetylcholine esterase activity is lowered in the striatum of R6/1 mice already at young ages. Accordingly, VAChT is also reduced in striatal tissue from patients with HD. The decrease of VAChT in the patient samples studied is restricted to the striatum and does not occur in the hippocampus or the spinal cord. The expression and localization of REST/NRSF, a transcriptional regulator for the VAChT and ChAT genes, are not altered in cholinergic neurons. We show that the R6/1 mice exhibit severe deficits in learning and reference memory. Taken together, our data show that the cholinergic system is dysfunctional in R6/1 and HD patients. Consequently, they provide a rationale for testing of pro-cholinergic drugs in this disease.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Mybl2, downregulated during colon epithelial cell maturation, is suppressed by miR-365. 21737779

    Altered profiles of gene expression reflect the reprogramming of intestinal epithelial cells during their maturation along the crypt-luminal axis. To focus on genes important in this process, and how they in turn are regulated, we identified 14 transcripts commonly downregulated in expression during lineage-specific maturation of the immortalized cell lines Caco-2 (absorptive), HT29Cl16E (goblet), and HT29Cl19A (secretory) induced by contact inhibition of growth or the short-chain fatty acid butyrate. One such gene, Mybl2 (Myb-related protein B), has been linked to the stem cell phenotype, and we report is also markedly suppressed in maturing cells along the crypt-luminal axis in vivo. Mybl2 is not significantly downregulated transcriptionally during colon cell maturation, but we identified a potential micro-RNA (miRNA)-binding sequence in the Mybl2 3'-untranslated region that mediates reporter gene suppression in differentiating colon cells. Accordingly, miRNAs predicted to bind this functional target are upregulated in differentiating colon epithelial cells in vitro and in vivo; expression of one of these, hsa-miR-365 (but not hsa-324-5p), suppresses Mybl2 protein expression in proliferating Caco-2 cells. These data demonstrate that miRNA silencing plays an important role in regulating gene expression in maturing colon epithelial cells, and that utilizing a target-centered approach, rather than profiling global miRNA expression, can identify physiologically relevant, functional miRNAs.
    Document Type:
    Reference
    Product Catalog Number:
    07-146
    Product Catalog Name:
    Anti-Histone H2A (acidic patch) Antibody
  • Up-regulation of type 2 iodothyronine deiodinase in dilated cardiomyopathy. 20453157

    Thyroid hormone (TH) has prominent effects on the heart, and hyperthyroidism is occasionally found to be a cause of dilated cardiomyopathy (DCM). We aim to explore the potential role of TH in the pathogenesis of DCM.The pathophysiological role of TH in the heart was investigated using a knock-in mouse model of inherited DCM with a deletion mutation DeltaK210 in the cardiac troponin T gene. Serum tri-iodothyronine (T(3)) levels showed no significant difference between wild-type (WT) and DCM mice, whereas cardiac T(3) levels in DCM mice were significantly higher than those in WT mice. Type 2 iodothyronine deiodinase (Dio2), which produces T(3) from thyroxin, was up-regulated in the DCM mice hearts. The cAMP levels were increased in DCM mice hearts, suggesting that transcriptional up-regulation of Dio2 gene is mediated through the evolutionarily conserved cAMP-response element site in its promoter. Propylthiouracil (PTU), an anti-thyroid drug, prevented the hypertrophic remodelling of the heart in DCM mice and improved their cardiac function and life expectancy. Akt and p38 mitogen-activated protein kinase (p38 MAPK) phosphorylation increased in the DCM mice hearts and PTU treatment significantly reduced the phosphorylation levels, strongly suggesting that Dio2 up-regulation is involved in cardiac remodelling in DCM through activating the TH-signalling pathways involving Akt and p38 MAPK. Dio2 gene expression was also markedly up-regulated in the mice hearts developing similar eccentric hypertrophy after myocardial infarction.Local hyperthyroidism via transcriptional up-regulation of the Dio2 gene may be an important underlying mechanism for the hypertrophic cardiac remodelling in DCM.
    Document Type:
    Reference
    Product Catalog Number:
    05-499
    Product Catalog Name:
    Anti-Histone H3 Antibody, clone 6.6.2
  • Water restriction increases renal inner medullary manganese superoxide dismutase (MnSOD). 22718889

    Oxidative stress damages cells. NaCl and urea are high in renal medullary interstitial fluid, which is necessary to concentrate urine, but which causes oxidative stress by elevating reactive oxygen species (ROS). Here, we measured the antioxidant enzyme superoxide dismutases (SODs, MnSOD, and Cu/ZnSOD) and catalase in mouse kidney that might mitigate the oxidative stress. MnSOD protein increases progressively from the cortex to the inner medulla, following the gradient of increasing NaCl and urea. MnSOD activity increases proportionately, but MnSOD mRNA does not. Water restriction, which elevates renal medullary NaCl and urea, increases MnSOD protein, accompanied by a proportionate increase in MnSOD enzymatic activity in the inner medulla, but not in the cortex or the outer medulla. In contrast, Cu/ZnSOD and TNF-α (an important regulator of MnSOD) do not vary between the regions of the kidney, and expression of catalase protein actually decreases from the cortex to the inner medulla. Water restriction increases activity of mitochondrial enzymes that catalyze production of ROS in the inner medulla, but reduces NADPH oxidase activity there. We also examined the effect of high NaCl and urea on MnSOD in Madin-Darby canine kidney (MDCK) cells. High NaCl and high urea both increase MnSOD in MDCK cells. This increase in MnSOD protein apparently depends on the elevation of ROS since it is eliminated by the antioxidant N-acetylcysteine, and it occurs without raising osmolality when ROS are elevated by antimycin A or xanthine oxidase plus xanthine. We conclude that ROS, induced by high NaCl and urea, increase MnSOD activity in the renal inner medulla, which moderates oxidative stress.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Embryonic overexpression of Galgt2 inhibits skeletal muscle growth via activation of myostatin signaling. 19086062

    Many proteins that affect skeletal muscle growth are secreted glycoproteins, yet the nature of how glycosylation regulates the expression and growth-promoting properties of such factors is not well understood. One type of glycosylation that affects muscle growth is that controlled by the CT GalNAc transferase (Galgt2), the enzyme responsible for the synthesis of the beta1,4GalNAc linkage on the CT carbohydrate antigen (GalNAcbeta1,4[Neu5Ac(or Gc)alpha2,3]Galbeta1,4GlcNAcbeta-R). In the mouse, both Galgt2 protein and the CT carbohydrate become confined to the neuromuscular synapse in skeletal muscle by the second postnatal week. Galgt2 transgenic mice that overexpress the CT carbohydrate from embryonic time-points onward in skeletal muscle had profoundly impaired muscle growth that was maintained throughout adulthood. Transgenic overexpression of Galgt2 increased myostatin protein expression and stimulated myostatin signaling, whereas expression of follistatin protein, a myostatin inhibitor, was decreased. Changed myostatin and follistatin protein levels were controlled at a posttranslational level, and inhibition of muscle growth was overcome if serum follistatin levels were normalized to wild-type levels. In contrast to embryonic Galgt2 overexpression, postnatal overexpression of Galgt2 had no effect on either myostatin or follistatin expression or muscle growth. These experiments demonstrate that Galgt2 can control growth by modulating the expression of myostatin and myostatin inhibitors during particular periods of muscle development.
    Document Type:
    Reference
    Product Catalog Number:
    07-408
    Product Catalog Name:
    Anti-Smad2/3 Antibody