Millipore Sigma Vibrant Logo
 

n-terminal


2720 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (2,245)
  • (435)
  • (7)
Can't Find What You're Looking For?
Contact Customer Service

 
  • The N-terminal amphipathic alpha-helix of viperin mediates localization to the cytosolic face of the endoplasmic reticulum and inhibits protein secretion. 19074433

    Viperin is an evolutionarily conserved interferon-inducible protein that localizes to the endoplasmic reticulum (ER) and inhibits a number of DNA and RNA viruses. In this study, we report that viperin specifically localizes to the cytoplasmic face of the ER and that an amphipathic alpha-helix at its N terminus is necessary for the ER localization of viperin and sufficient to promote ER localization of a reporter protein, dsRed. Overexpression of intact viperin but not the amphipathic alpha-helix fused to dsRed induced crystalloid ER. Consistent with other proteins that induce crystalloid ER, viperin self-associates, and it does so independently of the amphipathic alpha-helix. Viperin expression also affected the transport of soluble but not membrane-associated proteins. Expression of intact viperin or an N-terminal alpha-helix-dsRed fusion protein significantly reduced secretion of soluble alkaline phosphatase and reduced its rate of ER-to-Golgi trafficking. Similarly, viperin expression inhibited bulk protein secretion and secretion of endogenous alpha(1)-antitrypsin and serum albumin from HepG2 cells. Converting hydrophobic residues in the N-terminal alpha-helix to acidic residues partially or completely restored normal transport of soluble alkaline phosphatase, suggesting that the extended amphipathic nature of the N-terminal alpha-helical domain is essential for inhibiting protein secretion.
    Document Type:
    Reference
    Product Catalog Number:
    MABF106
    Product Catalog Name:
    Anti-Viperin Antibody, clone MaP.VIP
  • The c-Jun N-terminal protein kinase signaling pathway mediates Bax activation and subsequent neuronal apoptosis through interaction with Bim after transient focal cerebra ... 15356200

    The c-Jun N-terminal protein kinase (JNK) signaling pathway is implicated in neuronal apoptosis. The mechanism by which activated JNK induces neuronal apoptosis is strongly linked to mitochondrial apoptogenic proteins, although the molecular machinery downstream of JNK has not been precisely elucidated. Our study examined the relevance of proapoptotic Bcl-2 family members in JNK-mediated apoptosis after transient focal cerebral ischemia (tFCI), which, when induced by 60 min of middle cerebral artery (MCA) occlusion, elevated levels of JNK activity and phospho-JNK in the MCA territory. Phospho-JNK was primarily expressed in neurons and colocalized with terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-positive cells. Inhibition of JNK activity by anthra[1,9-cd]pyrazol-6(2H)-one (SP600125), a selective JNK inhibitor, protected neurons from ischemia-induced apoptosis detected by TUNEL staining and an apoptotic-related DNA fragmentation assay. SP600125 blocked translocation of the cell death effector Bax from the cytosol to the mitochondria after tFCI. BimL (Bim long) was induced and phosphorylated parallel to JNK activity. Coimmunoprecipitation studies consistently revealed increased interaction of JNK with BimL, as well as BimL with Bax, after tFCI. SP600125 blocked these interactions at a dose that significantly inhibited JNK-induced neuronal apoptosis. These results suggest that the JNK signaling pathway is involved in ischemia-induced neuronal apoptosis by stimulation, at least in part, of Bax translocation to the mitochondria, in which BimL is likely regulated by JNK as a downstream substrate for transmission of apoptotic signals to Bax.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • The N-terminal domain modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor desensitization. 24652293

    AMPA receptors are tetrameric glutamate-gated ion channels that mediate fast synaptic neurotransmission in mammalian brain. Their subunits contain a two-lobed N-terminal domain (NTD) that comprises over 40% of the mature polypeptide. The NTD is not obligatory for the assembly of tetrameric receptors, and its functional role is still unclear. By analyzing full-length and NTD-deleted GluA1-4 AMPA receptors expressed in HEK 293 cells, we found that the removal of the NTD leads to a significant reduction in receptor transport to the plasma membrane, a higher steady state-to-peak current ratio of glutamate responses, and strongly increased sensitivity to glutamate toxicity in cell culture. Further analyses showed that NTD-deleted receptors display both a slower onset of desensitization and a faster recovery from desensitization of agonist responses. Our results indicate that the NTD promotes the biosynthetic maturation of AMPA receptors and, for membrane-expressed channels, enhances the stability of the desensitized state. Moreover, these findings suggest that interactions of the NTD with extracellular/synaptic ligands may be able to fine-tune AMPA receptor-mediated responses, in analogy with the allosteric regulatory role demonstrated for the NTD of NMDA receptors.
    Document Type:
    Reference
    Product Catalog Number:
    07-598
    Product Catalog Name:
    Anti-GluR2/3 Antibody
  • Jun N-terminal kinase mediates activation of skeletal muscle glycogen synthase by insulin in vivo. 8940056

    Mitogen-activated protein kinases (MAPKs) represent a conserved family of Ser/Thr protein kinases with central roles in intracellular signaling. Activation of three prominent members of the MAPK family, i.e. extracellular response kinases (ERK), jun N-terminal kinase (JNK), and p38, was defined in vivo in order to establish their role, if any, in the cardinal response of skeletal muscle to insulin, the activation of glycogen synthesis. Insulin was found to activate ERK, JNK, and p38 in skeletal muscle. The time courses for activation of the three MAPKs by insulin, however, are distinctly different. Activation of JNK occurs most rapidly, within seconds. Activation of p38 by insulin follows that of JNK, within minutes. Activation of ERK occurs last, 4 min after administration of insulin. The temporal relationship between the activation of ERK, JNK, p38 and the downstream elements p90(rsk) and PP-1 in vivo suggest that JNK, but neither ERK nor p38 MAPKs, mediates insulin activation of glycogen synthase in vivo. Activation of JNK by anisomycin in vivo mimics activation of glycogen synthase by insulin. Challenge by anisomycin and insulin, in combination, are not additive, suggesting a common mode of glycogen synthase activation. The p90(rsk) isoform rapidly activated by insulin is identified as RSK3. In addition, RSK3 can be activated by JNK in vitro. Based upon these data a signal linkage map for activation of glycogen synthase in vivo in skeletal muscle can be constructed in which JNK mediates activation of glycogen synthase via RSK3.
    Document Type:
    Reference
    Product Catalog Number:
    12-241
    Product Catalog Name:
    Phospho-Glycogen Synthase Peptide-2
  • c-Jun N-terminal kinase binding domain-dependent phosphorylation of mitogen-activated protein kinase kinase 4 and mitogen-activated protein kinase kinase 7 and balancing ... 19135136

    The c-Jun N-terminal kinase (JNK) is a mitogen-activated protein kinase (MAPK) activated by stress-signals and involved in many different diseases. Previous results proved the powerful effect of the cell permeable peptide inhibitor d-JNKI1 (d-retro-inverso form of c-Jun N-terminal kinase-inhibitor) against neuronal death in CNS diseases, but the precise features of this neuroprotection remain unclear. We here performed cell-free and in vitro experiments for a deeper characterization of d-JNKI1 features in physiological conditions. This peptide works by preventing JNK interaction with its c-Jun N-terminal kinase-binding domain (JBD) dependent targets. We here focused on the two JNK upstream MAPKKs, mitogen-activated protein kinase kinase 4 (MKK4) and mitogen-activated protein kinase kinase 7 (MKK7), because they contain a JBD homology domain. We proved that d-JNKI1 prevents MKK4 and MKK7 activity in cell-free and in vitro experiments: these MAPKK could be considered not only activators but also substrates of JNK. This means that d-JNKI1 can interrupt downstream but also upstream events along the JNK cascade, highlighting a new remarkable feature of this peptide. We also showed the lack of any direct effect of the peptide on p38, MEK1, and extracellular signal-regulated kinase (ERK) in cell free, while in rat primary cortical neurons JNK inhibition activates the MEK1-ERK-Ets1/c-Fos cascade. JNK inhibition induces a compensatory effect and leads to ERK activation via MEK1, resulting in an activation of the survival pathway-(MEK1/ERK) as a consequence of the death pathway-(JNK) inhibition. This study should hold as an important step to clarify the strong neuroprotective effect of d-JNKI1.
    Document Type:
    Reference
    Product Catalog Number:
    06-659
    Product Catalog Name:
    Anti-phospho-c-Jun (Ser73) Antibody
  • c-Jun N-terminal protein kinase signalling pathway mediates lovastatin-induced rat brain neuroblast apoptosis. 17251057

    We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.
    Document Type:
    Reference
    Product Catalog Number:
    06-828
  • Jun N-terminal kinase maintains tissue integrity during cell rearrangement in the gut. 23462475

    Tissue elongation is a fundamental morphogenetic process that generates the proper anatomical topology of the body plan and vital organs. In many elongating embryonic structures, tissue lengthening is driven by Rho family GTPase-mediated cell rearrangement. During this dynamic process, the mechanisms that modulate intercellular adhesion to allow individual cells to change position without compromising structural integrity are not well understood. In vertebrates, Jun N-terminal kinase (JNK) is also required for tissue elongation, but the precise cellular role of JNK in this context has remained elusive. Here, we show that JNK activity is indispensable for the rearrangement of endoderm cells that underlies the elongation of the Xenopus gut tube. Whereas Rho kinase is necessary to induce cell intercalation and remodel adhesive contacts, we have found that JNK is required to maintain cell-cell adhesion and establish parallel microtubule arrays; without JNK activity, the reorganizing endoderm dissociates. Depleting polymerized microtubules phenocopies this effect of JNK inhibition on endoderm morphogenesis, consistent with a model in which JNK regulates microtubule architecture to preserve adhesive contacts between rearranging gut cells. Thus, in contrast to Rho kinase, which generates actomyosin-based tension and cell movement, JNK signaling is required to establish microtubule stability and maintain tissue cohesion; both factors are required to achieve proper cell rearrangement and gut extension. This model of gut elongation has implications not only for the etiology of digestive tract defects, but sheds new light on the means by which intra- and intercellular forces are balanced to promote topological change, while preserving structural integrity, in numerous morphogenetic contexts.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • c-Jun N-terminal kinase activation failure is a new mechanism of anthracycline resistance in acute myeloid leukemia. 18650843

    Chemotherapy resistance is a major challenge in acute myeloid leukemia (AML). Besides the P-glycoprotein efflux, additional cellular factors may contribute to drug resistance in AML. c-Jun N-terminal kinase (JNK) is activated after exposure of cells to chemotherapeutics. We asked whether chemoresistance in AML is attributed to intrinsic failure of the AML blasts to activate JNK. In vitro treatment of U937 AML cell line with anthracyclines induced a rapid and robust JNK phosphorylation and apoptosis. In contrast, the anthracyline-resistant derivative cell lines U937R and URD40 showed no JNK activation after exposure to anthracyclines, also at doses that resulted in high accumulation of the drug within the cells. RNA interference-based depletion of JNK1 in drug-sensitive U937 cells made them chemoresistant, whereas selective restoration of the inactive JNK pathway in the resistant U937R cells sensitized them to anthracyclines. Short-term in vitro exposure of primary AML cells (n=29) to daunorubicin showed a strong correlation between the in vitro pharmacodymanic changes of phospho-JNK levels and the response of patients to standard induction chemotherapy (P=0.012). We conclude that JNK activation failure confers another mechanism of anthracycline resistance in AML. Elucidating the ultimate mechanisms leading to JNK suppression in chemoresistant AML may be of major therapeutic value.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A series of N-terminal epitope tagged Hdh knock-in alleles expressing normal and mutant huntingtin: their application to understanding the effect of increasing the length ... 22892315

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disease that is caused by the expansion of a polyglutamine (polyQ) stretch within Huntingtin (htt), the protein product of the HD gene. Although studies in vitro have suggested that the mutant htt can act in a potentially dominant negative fashion by sequestering wild-type htt into insoluble protein aggregates, the role of the length of the normal htt polyQ stretch, and the adjacent proline-rich region (PRR) in modulating HD mouse model pathogenesis is currently unknown.We describe the generation and characterization of a series of knock-in HD mouse models that express versions of the mouse HD gene (Hdh) encoding N-terminal hemaglutinin (HA) or 3xFlag epitope tagged full-length htt with different polyQ lengths (HA7Q-, 3xFlag7Q-, 3xFlag20Q-, and 3xFlag140Q-htt) and substitution of the adjacent mouse PRR with the human PRR (3xFlag20Q- and 3xFlag140Q-htt). Using co-immunoprecipitation and immunohistochemistry analyses, we detect no significant interaction between soluble full-length normal 7Q- htt and mutant (140Q) htt, but we do observe N-terminal fragments of epitope-tagged normal htt in mutant htt aggregates. When the sequences encoding normal mouse htt's polyQ stretch and PRR are replaced with non-pathogenic human sequence in mice also expressing 140Q-htt, aggregation foci within the striatum, and the mean size of htt inclusions are increased, along with an increase in striatal lipofuscin and gliosis.In mice, soluble full-length normal and mutant htt are predominantly monomeric. In heterozygous knock-in HD mouse models, substituting the normal mouse polyQ and PRR with normal human sequence can exacerbate some neuropathological phenotypes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple