Millipore Sigma Vibrant Logo
 

antibodies: ER-15


17 Results Advanced Search  
Showing
Products (0)
Documents (17)
Site Content (0)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Innervation-dependent phosphorylation and accumulation of alphaB-crystallin and Hsp27 as insoluble complexes in disused muscle. 12205038

    Levels and phosphorylation states of the two small molecular chaperones, alphaB-crystallin and Hsp27, in disused rat soleus muscles were determined by Western blot analysis of extracts with antibodies recognizing each of the two proteins and their phosphorylated serine residues. Increased phosphorylation and relocalization to insoluble fractions were found within a few days of hind-limb suspension. High phosphorylation of alphaB-crystallin at Ser-59 (and to a certain extent, at Ser-45) and of Hsp27 at Ser-15 and Ser-85, along with phosphorylated, active states of p38 and p44/42 mitogen-activated protein kinases were maintained during hind-limb suspension but promptly returned to control levels within a 5-day recovery period. These results are similar to those observed with U373 MG glioma cells exposed to proteasome inhibitors (16). However, the responses of alphaB-crystallin and Hsp27 in suspended soleus muscles did not appear with ipsilateral transection of the sciatic nerve trunk, indicating mediation by nerve activity. The fact that ubiquitinated proteins accumulated in the insoluble fractions of suspended soleus muscle further suggests participation of alphaB-crystallin and Hsp27 in quality control of proteins in disused soleus muscle, with involvement of nerve activity-dependent processes.
    Document Type:
    Reference
    Product Catalog Number:
    07-646
  • Human liver-specific organic anion transporter-2 is a potent prognostic factor for human breast carcinoma. 17760952

    Human liver-specific organic anion transporter-2 (LST-2/OATP8/SLCO1B3) has been demonstrated to be expressed in various gastrointestinal carcinomas and also to play pivotal roles in the uptake of a wide variety of both endogenous and exogenous anionic compounds, including bile acids, conjugated steroids and hormones, into hepatocytes in the human liver. However, the biological significance of LST-2 in human carcinomas remains unknown. In the present study, we examined the expression of LST-2 in 102 cases of breast carcinoma using immunohistochemistry and correlated the findings with various clinicopathological parameters in order to examine the possible biological and clinical significance of LST-2. LST-2 immunoreactivity was detected in 51 cases (50.0%); of these 51 positive cases, LST-2 immunoreactivity was inversely correlated with tumor size (P = 0.0289). In addition, LST-2 immunoreactivity was significantly associated with a decreased risk of recurrence and improved prognosis by both univariate (P = 0.02 and P = 0.01) and multivariate (P = 0.03 and P = 0.01) analyses. In the estrogen receptor-positive groups, the LST-2-positive patients showed good prognoses. Considering that LST-2 transports estrone-3-sulfate, these results suggest that LST-2 overexpression is associated with a hormone-dependent growth mechanism of the breast cancer. The results of our present study demonstrate that LST-2 immunoreactivity is a potent prognostic factor in human breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    MAB429
  • Dynamic regulation of p53 subnuclear localization and senescence by MORC3. 17332504

    The tumor suppressor p53 is a key transcriptional factor regulating the induction of cellular senescence by oncogenic signals. The activity of p53 is regulated by recruitment into promyelocytic leukemia (PML)-nuclear bodies (NBs) as well as by stabilization through posttranslational modifications such as phosphorylation and acetylation. Here we found that MORC3 (microrchidia3)-ATPase activated p53 and induced cellular senescence in normal human and mouse fibroblasts but not p53-/- fibroblasts. Conversely, genotoxic stress-induced phosphorylation and stabilization of p53 but barely increased its transcriptional activity in Morc3-/- fibroblasts. MORC3 localized on PML-NBs in presence of PML and mediated recruitment of p53 and CREB-binding protein (CBP) into PML-NBs. In contrast, expression of ATPase activity-deficient mutant MORC3-E35A or siRNA repression of MORC3 impaired the localization of p53 and Sp100 but not CBP on PML-NBs. These results suggest that MORC3 regulates p53 activity and localization into PML-NBs. We identified a new molecular mechanism that regulates the activity of nuclear proteins by localization to a nuclear subdomain.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Changes in ontogenetic expression of estrogen receptor alpha and not of estrogen receptor beta in the female rat reproductive tract. 11932206

    To evaluate ontogenetic expression and localization of estrogen receptor (ER) alpha and beta in fetal female rat reproductive tract, competitive RT-PCR and immunohistochemistry were performed. Expression levels for Müllerian ERalpha, ERbeta1 and ERbeta2 mRNAs were determined by competitive RT-PCR. ERalpha expression on gestational day (GD) 15 x 5 increased 4 x 4-fold by GD 21 x 5, whereas both ERbeta1 and ERbeta2 gene expression were maintained at lower constant levels compared with ERalpha during development. ER immunolocalization was evaluated within three regions along the Müllerian duct axis; these were proximal, middle and caudal, which differentiate into oviduct, uterus and upper vagina respectively. Nuclear ERalpha was localized predominantly in proximal Müllerian epithelium, and middle and caudal Müllerian mesenchyme on GDs 15 x 5-21 x 5. Staining intensity for ERalpha increased with development in all regions. However, ERbeta immunoreactivity was not detected in any region during prenatal life after separate staining with three different polyclonal anti-rat ERbeta antibodies. These findings provide fundamental information critical for clarifying the species-specific physiological roles of ER subtypes during fetal development and for investigating the tissue-specific mechanisms underlying the prenatal response to estrogen and estrogen receptor agonists.
    Document Type:
    Reference
    Product Catalog Number:
    06-629
  • Phosphorylation status of heat shock protein 27 influences neurite growth in adult dorsal root ganglion sensory neurons in vitro. 21638305

    The small heat shock protein Hsp27 influences neurite growth, potentially via phosphorylation-dependent interactions of Hsp27 with actin. To investigate the contribution of Hsp27 phosphorylation to neurite growth in adult DRG neurons, we employed hamster Hsp27 cDNA constructs (in pIRES-EGFP) with mutations in the phosphorylation sites, either mimicking constitutively phosphorylated Hsp27 (with substitution of serines 15 and/or 90 by glutamate) or preventing phosphorylation at the site (serines 15/90 replaced by alanine). Five mutant constructs were employed in this study in addition to wild-type hamster Hsp27; siRNA directed against the rat Hsp27 was used to depress endogenous Hsp27. Neurite growth was assessed in EGFP-expressing cells following immunocytochemistry and tracing of neurite growth. Hsp27 staining and phalloidin labelling were used to examine Hsp27 and actin colocalization in neurons and growth cones. Overall, our results demonstrate that the role that Hsp27 plays in neurite growth can be affected by phosphorylation, oligomerization, or a combination of both. Hsp27 constructs that are able to dimerize and/or form large oligomers [WT, Hsp27-AA, Hsp27-AE, Hsp27-?(5-23)] rescued siRNA-depressed neurite growth, whereas Hsp27 mutants that do not form dimers or oligomers (Hsp27-EE and Hsp27-EA) were unable to rescue the effect of the siRNA. The phalloidin labelling qualitatively showed a higher level of localization of actin with the Hsp27-AA compared with the other constructs. Although phosphorylation appears to be important in growth, the ability of Hsp27 to exist in both phospho- and nonphospho- states is likely key to its role in regulating cytoskeletal elements involved in neurite growth.
    Document Type:
    Reference
    Product Catalog Number:
    AP307P
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, (H+L) HRP conjugate
  • Radiation Sensitivity and Tumor Susceptibility in ATM Phospho-Mutant ATF2 Mice. 20740050

    The transcription factor ATF2 was previously shown to be an ATM substrate. Upon phosphorylation by ATM, ATF2 exhibits a transcription-independent function in the DNA damage response through localization to DNA repair foci and control of cell cycle arrest. To assess the physiological significance of this phosphorylation, we generated ATF2 mutant mice in which the ATM phosphoacceptor sites (S472/S480) were mutated (ATF2(KI)). ATF2(KI) mice are more sensitive to ionizing radiation (IR) than wild-type (ATF2 (WT)) mice: following IR, ATF2(KI) mice exhibited higher levels of apoptosis in the intestinal crypt cells and impaired hepatic steatosis. Molecular analysis identified impaired activation of the cell cycle regulatory protein p21(Cip/Waf1) in cells and tissues of IR-treated ATF2(KI) mice, which was p53 independent. Analysis of tumor development in p53(KO) crossed with ATF2(KI) mice indicated a marked decrease in amount of time required for tumor development. Further, when subjected to two-stage skin carcinogenesis process, ATF2(KI) mice developed skin tumors faster and with higher incidence, which also progressed to the more malignant carcinomas, compared with the control mice. Using 3 mouse models, we establish the importance of ATF2 phosphorylation by ATM in the acute cellular response to DNA damage and maintenance of genomic stability.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Phosphorylation of Ser78 of Hsp27 correlated with HER-2/neu status and lymph node positivity in breast cancer. 17697330

    Abnormal amplification/expression of HER-2/neu oncogene has been causally linked with tumorigenesis and metastasis in breast cancer and associated with shortened overall survival of patients. Recently, heat shock protein 27 (Hsp27) was reported to be highly expressed in HER-2/neu positive tumors and cell lines. However, putative functional links between phosphorylation of Hsp27 with HER-2/neu status and other clinicopathological features remain to be elucidated.Comparative phosphoproteomic studies of HER-2/neu positive and -negative breast tumors revealed that Hsp27, one of the identified phosphoproteins, was highly phosphorylated in HER-2/neu positive tumors. The extent of Hsp27 phosphorylation at its Ser15, Ser78 and Ser82 residues were further evaluated with site-specific antibodies in tumor samples by tissue lysate array- and tissue microarray-based analyses, and in the BT474 breast cancer cell line treated with heregulin alpha1 (HRG alpha1) or the p38 MAPK inhibitor, SB203580. The tissue lysate array study indicated that only the level of pSer78 in HER-2/neu positive tumors was more than 2-fold that in HER-2/neu negative tumors. Treatment of BT474 cells with HRG alpha1 and SB203580 indicated that Ser78 phosphorylation was mainly regulated by the HER-2/neu-p38 MAPK pathway. Immunohistochemical staining of sections from a tissue microarray with 97 breast tumors showed that positive staining of pSer78 significantly correlated with HER-2/neu (p = 0.004) and lymph node positivity (p = 0.026).This investigation demonstrated the significant correlation of enhanced phosphorylation of the Ser78 residue of Hsp27 with HER-2/neu and lymph node positivity in breast cancer.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Estrogen sulfotransferase and steroid sulfatase in human breast carcinoma. 12782580

    Estrogen sulfotransferase (EST; SULT 1E1 or STE gene) sulfonates estrogens to inactive estrogen sulfates, whereas steroid sulfatase (STS) hydrolyzes estrone sulfate to estrone. Both EST and STS have been suggested to play important roles in regulating the in situ production of estrogens in human breast carcinoma tissues. However, the expression of EST has not been examined in breast carcinoma tissues, and the biological significance of EST and STS remains unknown. Therefore, in this study, we examined the expression of EST and STS in 35 specimens of human breast carcinoma tissues using immunohistochemistry, reverse transcription-PCR (RT-PCR), and enzymatic assay. EST and STS immunoreactivity was also correlated with various clinicopathological parameters, including prognosis to examine the biological significance of these enzymes in 113 breast carcinomas. EST and STS immunoreactivity was detected in carcinoma cells and significantly associated with their mRNA levels (P = 0.0027 and 0.0158, respectively), as measured by RT/real-time PCR, and enzymatic activities (P = 0.0005 and 0.0089, respectively) in 35 breast carcinomas. In breast cancer tissues examined by laser capture microdissection/RT-PCR analyses, the mRNA for EST was localized in both carcinoma and intratumoral stromal cells, whereas that of STS was detected only in carcinoma cells. Of the 113 invasive ductal carcinomas examined in this study, EST and STS immunoreactivity was detected in 50 and 84 cases (44.2 and 74.3%), respectively. In these cases, EST immunoreactivity was inversely correlated with tumor size (P = 0.003) or lymph node status (P = 0.0027). In contrast, STS immunoreactivity was significantly correlated with tumor size (P = 0.0047). Moreover, EST immunoreactivity was significantly associated with a decreased risk of recurrence or improved prognosis by both uni (P = 0.0044, and 0.0026, respectively) and multivariate (P = 0.0429 and 0.0149, respectively) analyses. STS immunoreactivity, however, was significantly associated with an increased risk of recurrence (P = 0.0118) and worsened prognosis (P = 0.0325) by univariate analysis. Results from our present study suggest that immunoreactivities for both EST and STS are associated with their mRNA level and enzymatic activity and that EST immunoreactivity is considered to be a potent prognostic factor in human breast carcinoma.
    Document Type:
    Reference
    Product Catalog Number:
    MAB429
  • Intratumoral concentration of sex steroids and expression of sex steroid-producing enzymes in ductal carcinoma in situ of human breast. 18310280

    It is well known that sex steroids play important roles in the development of invasive ductal carcinoma (IDC) of the human breast. However, biological significance of sex steroids remains largely unclear in ductal carcinoma in situ (DCIS), regarded as a precursor lesion of IDC, which is partly due to the fact that the intratumoral concentration of sex steroids has not been examined in DCIS. Therefore, in this study, we first examined the intratumoral concentrations of estradiol and 5alpha-dihydrotestosterone (DHT) using liquid chromatography/electrospray tandem mass spectrometry in DCIS. Intratumoral concentrations of both estradiol and DHT were threefold higher in DCIS than non-neoplastic breast tissues and estrogen-producing enzymes (aromatase, steroid sulfatase, and 17beta-hydroxysteroid dehydrogenase type 1 (17betaHSD1)), and androgen-producing enzymes (17betaHSD5 and 5alpha-reductase type 1 (5alphaRed1)) were abundantly expressed in DCIS by real-time PCR and immunohistochemical analyses. The intratumoral concentration of DHT was significantly lower in IDC than DCIS, while the expression of aromatase mRNA in carcinoma cells and intratumoral stromal cells was significantly higher in IDC than those in DCIS. Immunohistochemistry for sex steroid-producing enzymes in DCIS demonstrated that 5alphaRed1 immunoreactivity was positively correlated with Ki-67 labeling index and histological grade and was also associated with an increased risk of recurrence in patients with DCIS examined. Results of our study suggest that intratumoral concentrations of estradiol and DHT are increased in DCIS, which is possibly due to intratumoral production of these steroids. Therefore, estradiol and DHT may play important roles in the development of DCIS of the human breast.
    Document Type:
    Reference
    Product Catalog Number:
    MAB429
  • Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. 20228125

    Sex steroids play important roles in the development of many human breast carcinomas, and aromatase inhibitors are used for the anti-estrogen therapy. Recent studies have demonstrated that aromatase suppressed 5alpha-dihydrotestosterone (DHT) synthesis in breast carcinoma cells, but intratumoral concentration of androgens and its significance have not been reported in the breast carcinoma patients treated with aromatase inhibitors. Therefore, we examined androgen concentrations in breast carcinoma tissues treated with exemestane, and further performed in vitro studies to characterize the significance of androgen actions. Intratumoral DHT concentration was significantly higher in breast carcinoma tissues following exemestane treatment (n=9) than those without the therapy (n=7), and 17beta-hydroxysteroid dehydrogenase type 2 (17betaHSD2) status was significantly altered to be positive after the treatment. Following in vitro studies showed that 17betaHSD2 expression was dose dependently induced by both DHT and exemestane in T-47D breast carcinoma cells, but these inductions were not additive. DHT-mediated induction of 17betaHSD2 expression was markedly suppressed by estradiol (E(2)) in T-47D cells. E(2)-mediated cell proliferation was significantly inhibited by DHT in T-47D cells, associated with an increment of 17betaHSD2 expression level. These findings suggest that intratumoral androgen actions are increased during exemestane treatment. 17betaHSD2 is a potent DHT-induced gene in human breast carcinoma, and may not only be involved in anti-proliferative effects of DHT on breast carcinoma cells but also serve as a potential marker for response to aromatase inhibitor in the breast carcinoma patients.
    Document Type:
    Reference
    Product Catalog Number:
    MAB429