Millipore Sigma Vibrant Logo
 

brain-specific+angiogenesis+inhibitor


3 Results Advanced Search  
Showing
Products (0)
Documents (3)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (2)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • The adhesion-GPCR BAI1 regulates synaptogenesis by controlling the recruitment of the Par3/Tiam1 polarity complex to synaptic sites. 23595754

    Excitatory synapses are polarized structures that primarily reside on dendritic spines in the brain. The small GTPase Rac1 regulates the development and plasticity of synapses and spines by modulating actin dynamics. By restricting the Rac1-guanine nucleotide exchange factor Tiam1 to spines, the polarity protein Par3 promotes synapse development by spatially controlling Rac1 activation. However, the mechanism for recruiting Par3 to spines is unknown. Here, we identify brain-specific angiogenesis inhibitor 1 (BAI1) as a synaptic adhesion GPCR that is required for spinogenesis and synaptogenesis in mice and rats. We show that BAI1 interacts with Par3/Tiam1 and recruits these proteins to synaptic sites. BAI1 knockdown results in Par3/Tiam1 mislocalization and loss of activated Rac1 and filamentous actin from spines. Interestingly, BAI1 also mediates Rac-dependent engulfment in professional phagocytes through its interaction with a different Rac1-guanine nucleotide exchange factor module, ELMO/DOCK180. However, this interaction is dispensable for BAI1's role in synapse development because a BAI1 mutant that cannot interact with ELMO/DOCK180 rescues spine defects in BAI1-knockdown neurons, whereas a mutant that cannot interact with Par3/Tiam1 rescues neither spine defects nor Par3 localization. Further, overexpression of Tiam1 rescues BAI1 knockdown spine phenotypes. These results indicate that BAI1 plays an important role in synaptogenesis that is mechanistically distinct from its role in phagocytosis. Furthermore, our results provide the first example of a cell surface receptor that targets members of the PAR polarity complex to synapses.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Vasculostatin inhibits intracranial glioma growth and negatively regulates in vivo angiogenesis through a CD36-dependent mechanism. 19176395

    Angiogenesis is a critical physiologic process that is appropriated during tumorigenesis. Little is known about how this process is specifically regulated in the brain. Brain angiogenesis inhibitor-1 (BAI1) is a brain-predominant seven-transmembrane protein that contains five antiangiogenic thrombospondin type-1 repeats (TSR). We recently showed that BAI1 is cleaved at a conserved proteolytic cleavage site releasing a soluble, 120 kDa antiangiogenic factor called vasculostatin (Vstat120). Vstat120 has been shown to inhibit in vitro angiogenesis and suppress subcutaneous tumor growth. Here, we examine its effect on the intracranial growth of malignant gliomas and further study its antitumor mechanism. First, we show that expression of Vstat120 strongly suppresses the intracranial growth of malignant gliomas, even in the presence of the strong proangiogenic stimulus mediated by the oncoprotein epidermal growth factor receptor variant III (EGFRvIII). This tumor-suppressive effect is accompanied by a decrease in tumor vascular density, suggesting a potent antiangiogenic effect in the brain. Second, and consistent with this interpretation, we find that treatment with Vstat120 reduces the migration of cultured microvascular endothelial cells in vitro and inhibits corneal angiogenesis in vivo. Third, we show that these antivascular effects critically depend on the presence of the cell surface receptor CD36 on endothelial cells in vitro and in vivo, supporting the role of Vstat120 TSRs in mediating these effects. These results advance the understanding of brain-specific angiogenic regulation, and suggest that Vstat120 has therapeutic potential in the treatment of brain tumors and other intracerebral vasculopathies.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3317
    Product Catalog Name:
    Anti-MMP-14 Antibody, hemopexin domain, clone 113-5B7
  • «
  • <
  • 1
  • >
  • »