Millipore Sigma Vibrant Logo
 

hydrogen


634 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (175)
  • (11)
  • (3)
  • (2)
  • (1)

Application Type

  • (1)
  • (1)

Field of Activity

  • (1)
  • (1)

Parameter

  • (1)

Sample

  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: a mechanism through cardiac mitochondrial protection. 20450490

    HF (heart failure) after MI (myocardial infarction) is a major cause of morbidity and mortality worldwide. Recent studies have shown that hydrogen sulfide (H2S) has cardioprotective effects. Hence, we aimed to elucidate the potential effects of H2S on HF after MI in rats. The HF model after MI was made by ligating the left anterior descending coronary artery. HF groups and sham-operated groups of rats were treated with vehicle, sodium hydrosulfide (NaHS) or PAG (propagylglycine). Equal volumes of saline, 3.136 mg · kg-1 · day-1 NaHS or 37.5 mg · kg-1 · day-1 PAG, were intraperitoneally injected into rats for 6 weeks after operation. Survival, lung-to-body weight ratio and left ventricular haemodynamic parameters were measured. The protein and gene expression of Bcl-2, Bax, caspase 3 and cytochrome c were analysed by Western blotting and RT-PCR (reverse transcription-PCR). TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling) and EM (electron microscopy) were used to examine apoptosis of heart tissues. NaHS was found to improve the survival and lower the lung-to-body weight ratio. It increased the LVSP (left ventricular systolic pressure) and the maximum rate of pressure and decreased LVEDP (left ventricular end-diastolic pressure). Furthermore, NaHS promoted Bcl-2 protein and mRNA expression and demoted Bax, caspase 3 protein and mRNA expression in HF rats. We also showed that NaHS decreased the leakage of cytochrome c protein from the mitochondria to the cytoplasm. Histological observation by TUNEL and EM proved that NaHS inhibited cardiac apoptosis in HF hearts and improved mitochondrial derangements, but that PAG aggravated those indices. Hence, H2S has protective effects in HF rats.
    Document Type:
    Reference
    Product Catalog Number:
    PP50
    Product Catalog Name:
    IgM, Mouse
  • Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. 25873160

    Hydrogen sulfide (H2S) is an endogenous gaseous biological mediator, which regulates, among others, the oxidative balance of cells under normal physiological conditions, as well as in various diseases. Several previous studies have reported that H2S attenuates inflammatory mediator production. In this study, we investigated the role of H2S in chromatin modulation in an in vitro model of lipopolysaccharide (LPS)-induced inflammation and evaluated its effects on inflammatory cytokine production. Tamm-Horsfall protein 1 (THP-1) differentiated macrophages were pre-treated with sodium hydrosulfide (NaHS) (an H2S donor) at 0.01, 0.1, 0.5 or 1 mM for 30 min. To stimulate cytokine production, the cells were challenged with bacterial LPS (1 µg/ml) for 1, 4, 8 or 24 h. Histone H3 acetylation was analyzed by chromatin immunoprecipitation (ChIP), cytokine production was measured by ELISA and histone deacetylase (HDAC) activity was analyzed using a standard biochemical assay. H2S inhibited the production of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in a concentration-dependent manner; it was most effective at the two highest concentrations used. This effect was associated with a decrease in histone H3 acetylation at the IL-6 and TNF-α promoters in the cells exposed to H2S or H2S + LPS. The findings of the present study suggest that H2S suppresses histone acetylation, which, in turn, inhibits chromatin openness, leading to a decrease in the gene transcription of various pro-inflammatory cytokines. Therefore, this mechanism may contribute to the previously demonstrated anti-inflammatory effects of H2S and various H2S donors.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Hydrogen gas reduced acute hyperglycemia-enhanced hemorrhagic transformation in a focal ischemia rat model. 20423721

    Hyperglycemia is one of the major factors for hemorrhagic transformation after ischemic stroke. In this study, we tested the effect of hydrogen gas on hemorrhagic transformation in a rat focal cerebral ischemia model. Sprague-Dawley rats (n=72) were divided into the following groups: sham; sham treated with hydrogen gas (H(2)); Middle Cerebral Artery Occlusion (MCAO); and MCAO treated with H(2) (MCAO+H(2)). All rats received an injection of 50% dextrose (6 ml/kg i.p.) and underwent MCAO 15 min later. Following a 90 min ischemic period, hydrogen was inhaled for 2 h during reperfusion. We measured the level of blood glucose at 0 h, 0.5 h, 4 h, and 6 h after dextrose injection. Infarct and hemorrhagic volumes, neurologic score, oxidative stress (evaluated by measuring the level of 8 Hydroxyguanosine (8OHG), 4-Hydroxy-2-Nonenal (HNE) and nitrotyrosine), and matrix metalloproteinase (MMP)-2/MMP-9 activity were measured at 24 h after ischemia. We found that hydrogen inhalation for 2 h reduced infarct and hemorrhagic volumes and improved neurological functions. This effect of hydrogen was accompanied by a reduction of the expression of 8OHG, HNE, and nitrotyrosine and the activity of MMP-9. Furthermore, a reduction of the blood glucose level from 500+/-32.51 to 366+/-68.22 mg/dl at 4 h after dextrose injection was observed in hydrogen treated animals. However, the treatment had no significant effect on the expression of ZO-1, occludin, collagen IV or aquaporin4 (AQP4). In conclusion, hydrogen gas reduced brain infarction, hemorrhagic transformation, and improved neurological function in rats. The potential mechanisms of decreased oxidative stress and glucose levels after hydrogen treatment warrant further investigation.
    Document Type:
    Reference
    Product Catalog Number:
    17-376
    Product Catalog Name:
    Nitrotyrosine ELISA
  • High-content hydrogen water-induced downregulation of miR-136 alleviates non-alcoholic fatty liver disease by regulating Nrf2 via targeting MEG3. 29261513

    This study was aimed to investigate the potential regulatory mechanism of high-content hydrogen water (HHW) in non-alcoholic fatty liver disease (NAFLD). A high-fat diet (HFD)-induced NAFLD mice model and cellular model were prepared. The serum levels of alanine transaminase (ALT), aspartate transaminase (AST), total cholesterol (TCH) and triglycerides (TG) were measured. The expression levels of representative five microRNA (miRNAs) (miR-103, miR-488, miR-136, miR-505 and miR-148a) in liver tissues were determined by quantitative real-time PCR (qRT-PCR). The target of miR-136 was validated by RNA immunoprecipitation (RIP) and pull-down assay. MiR-136, MEG3 and nuclear factor erythroid 2-related factor 2 (Nrf2) expression levels following cell treatment were detected in hepatocytes using qRT-PCR and Western blotting. Moreover, cell viability and TG content were conducted. MiR-136 was downregulated, MEG3 as well as Nrf2 was upregulated and serum lipid level was reduced in NAFLD mice model after HHW treatment, which exerted the same effect in cellular model. RIP and RNA pull-down assay confirmed that MEG2 was a downstream target of miR-136. What's more, HHW ameliorated lipid accumulation by regulating miR-136/MEG3/Nrf2 axis in vitro and in vivo. Hence, HHW alleviated NAFLD by downregulation of miR-136 through mediating Nrf2 via targeting MEG3.
    Document Type:
    Reference
    Product Catalog Number:
    17-701
    Product Catalog Name:
    EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Hydrogen sulfide as an endogenous modulator of biliary bicarbonate excretion in the rat liver. 15890026

    Cystathionine gamma-lyase (CSE) is an enzyme catalyzing cystathionine and cysteine to yield cysteine and hydrogen sulfide (H(2)S), respectively. This study aimed to examine if H(2)S generated from the enzyme could serve as an endogenous regulator of hepatobiliary function. Gas chromatographic analyses indicated that, among rat organs herein examined, liver constituted one of the greatest components of H(2)S generation in the body, at 100 mumol/g of tissue, comparable to that in kidney and 1.5-fold greater than that in brain, where roles of the gas in the regulation of neurotransmission were reported previously. At least half of the gas amount in the liver appeared to be derived from CSE, because blockade of the enzyme by propargylglycine suppressed it by 50%. Immunohistochemistry revealed that CSE occurs not only in hepatocytes, but also in bile duct. In livers in vivo, as well as in those perfused ex vivo, treatment with the CSE inhibitor induced choleresis by stimulating the basal excretion of bicarbonate in bile samples. Transportal supplementation of NaHS at 30 mumol/L, but not that of N-acetylcysteine as a cysteine donor, abolished these changes elicited by the CSE inhibitor in the perfused liver. The changes elicited by the CSE blockade did not coincide with alterations in hepatic vascular resistance, showing little involvement of vasodilatory effects of the gas in these events, if any. These results first provided evidence that H(2)S generated through CSE modulates biliary bicarbonate excretion and is thus a determinant of bile salt-independent bile formation in the rat liver.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1675
    Product Catalog Name:
    Anti-Cytokeratin 19 Antibody, clone E6
  • Hydrogen in drinking water reduces dopaminergic neuronal loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. 19789628

    It has been shown that molecular hydrogen (H(2)) acts as a therapeutic antioxidant and suppresses brain injury by buffering the effects of oxidative stress. Chronic oxidative stress causes neurodegenerative diseases such as Parkinson's disease (PD). Here, we show that drinking H(2)-containing water significantly reduced the loss of dopaminergic neurons in PD model mice using both acute and chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The concentration-dependency of H(2) showed that H(2) as low as 0.08 ppm had almost the same effect as saturated H(2) water (1.5 ppm). MPTP-induced accumulation of cellular 8-oxoguanine (8-oxoG), a marker of DNA damage, and 4-hydroxynonenal (4-HNE), a marker of lipid peroxidation were significantly decreased in the nigro-striatal dopaminergic pathway in mice drinking H(2)-containing water, whereas production of superoxide (O(2)*(-)) detected by intravascular injection of dihydroethidium (DHE) was not reduced significantly. Our results indicated that low concentration of H(2) in drinking water can reduce oxidative stress in the brain. Thus, drinking H(2)-containing water may be useful in daily life to prevent or minimize the risk of life style-related oxidative stress and neurodegeneration.
    Document Type:
    Reference
    Product Catalog Number:
    AB152
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody
  • Hydrogen sulfide augments synaptic neurotransmission in the nucleus of the solitary tract. 21734104

    Within the brain stem, the nucleus tractus solitarii (NTS) serves as a principal central site for sensory afferent integration from the cardiovascular and respiratory reflexes. Neuronal activity and synaptic transmission in the NTS are highly pliable and subject to neuromodulation. In the central nervous system, hydrogen sulfide (H₂S) is a gasotransmitter generated primarily by the enzyme cystathionine-β-synthase (CBS). We sought to determine the role of H₂S, and its generation by CBS, in NTS excitability. Real-time RT-PCR, immunoblot, and immunohistochemistry analysis identified the presence of CBS in the NTS. Patch-clamp electrophysiology in brain stem slices examined excitatory postsynaptic currents (EPSCs) and membrane properties in monosynaptically driven NTS neurons. Confocal imaging of labeled afferent synaptic terminals in NTS slices monitored intracellular calcium. Exogenous H₂S significantly increased the amplitude of evoked solitary tract (TS)-EPSCs, frequency of miniature (m)EPSCs, and presynaptic terminal calcium fluorescence in the NTS. H₂S did not alter action potential discharge or postsynaptic properties. On the other hand, the CBS inhibitor aminooxyacetate (AOA) significantly reduced the amplitude of TS-EPSCs and presynaptic terminal calcium fluorescence in the NTS without altering postsynaptic properties. Taken together, these data support a presynaptic role for endogenous H₂S in modulation of excitatory neurotransmission in the NTS.
    Document Type:
    Reference
    Product Catalog Number:
    AB5804
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Hydrogen sulfide upregulated lncRNA CasC7 to reduce neuronal cell apoptosis in spinal cord ischemia-reperfusion injury rat. 29571256

    Hydrogen sulfide has been recognized as an important neuroprotective agent in the nervous system. The present study aimed to study the effect and the underlying mechanisms of hydrogen sulfide on spinal cord ischemia-reperfusion injury (SCII).The gene mRNA and protein expression were examined by RT-PCR and western blot, respectively. Spinal cord infarct zone was analyzed by Triphenyltetrazolium chloride staining. Cell apoptosis was detected by MTT assay. The relationship between miR-30c and CasC7 was analyzed by RNA immunoprecipitation (RIP) and RNA pull-down.We observed that SCII rat model have a bigger spinal cord infarct zone than the control rat, but NaSH preprocessing could reduce spinal cord infarct zone in SCII rat. OGD/R induced cell apoptosis, and NaSH preprocessing reduced the OGD/R-induced SH5Y-SY cells apoptosis. CasC7 was decreased in SCII rat and OGD/R-induced SH5Y-SY cells, while miR-30c expression was increased. NaSH preprocessing upregulated CasC7 and downregulated miR-30c in OGD/R-induced SH5Y-SY cells. In OGD/R induced SH5Y-SY cells with NaSH preprocessing, knockdown of CasC7 could upregulate miR-30c expression, promote cell apoptosis and downregulate miR-30c's target gene expression. The RIP and RNA pull-down demonstrated that CasC7 functioned as a miR-30c decoy, and miR-30c inhibitor could reverse the effect of si-CasC7. Moreover, intrathecal injection of si-CasC7 upregulated miR-30c expression and increased spinal cord infarct zone in SCII rat with NaSH preprocessing.Hydrogen sulfide protects spinal cord by upregulating CasC7 expression in SCII rat model.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Hydrogen therapy attenuates irradiation-induced lung damage by reducing oxidative stress. 21764987

    Molecular hydrogen (H(2)) is an efficient antioxidant that diffuses rapidly across cell membranes, reduces reactive oxygen species (ROS), such as hydroxyl radicals and peroxynitrite, and suppresses oxidative stress-induced injury in several organs. ROS have been implicated in radiation-induced damage to lungs. Because prompt elimination of irradiation-induced ROS should protect lung tissue from damaging effects of irradiation, we investigated the possibility that H(2) could serve as a radioprotector in the lung. Cells of the human lung epithelial cell line A549 received 10 Gy irradiation with or without H(2) treatment via H(2)-rich PBS or medium. We studied the possible radioprotective effects of H(2) by analyzing ROS and cell damage. Also, C57BL/6J female mice received 15 Gy irradiation to the thorax. Treatment groups inhaled 3% H(2) gas and drank H(2)-enriched water. We evaluated acute and late-irradiation lung damage after H(2) treatment. H(2) reduced the amount of irradiation-induced ROS in A549 cells, as shown by electron spin resonance and fluorescent indicator signals. H(2) also reduced cell damage, measured as levels of oxidative stress and apoptotic markers, and improved cell viability. Within 1 wk after whole thorax irradiation, immunohistochemistry and immunoblotting showed that H(2) treatment reduced oxidative stress and apoptosis, measures of acute damage, in the lungs of mice. At 5 mo after irradiation, chest computed tomography, Ashcroft scores, and type III collagen deposition demonstrated that H(2) treatment reduced lung fibrosis (late damage). This study thus demonstrated that H(2) treatment is valuable for protection against irradiation lung damage with no known toxicity.
    Document Type:
    Reference
    Product Catalog Number:
    S7101
    Product Catalog Name:
    ApopTag® Plus Peroxidase In Situ Apoptosis Kit