Millipore Sigma Vibrant Logo
 

sphingosine


125 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (79)
  • (38)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Type 1 sphingosine 1-phosphate G protein-coupled receptor (S1P1) mediation of enhanced IL-4 generation by CD4 T cells from S1P1 transgenic mice. 17404269

    Sphingosine 1-phosphate (S1P) is a natural lipid mediator that regulates immune cell traffic, Ab production, and T cell cytokine generation by mechanisms that enhance Th2 activities. Responses to S1P are controlled principally by the diverse expression patterns of its receptors in different cells. In T cells, the type 1 (S1P(1)) and type 4 (S1P(4)) G protein-coupled receptors are predominant. S1P(1) mainly transduces effects on T cell migration and trafficking, whereas S1P(4) transduces immunosuppression via its effects on T cell proliferation and cytokine production. Using T cell-specific S1P(1) transgenic (TG) mice, we investigated the regulatory effects of the S1P-S1P(1) axis on T cell cytokine production. The production of IL-4, but not IL-2 or IFN-gamma, was significantly up-regulated >10-fold in activated CD4 T cells from S1P(1) TG mice compared with those from wild-type mice. Quantitative real-time PCR analysis revealed that IL-4 up-regulation was initiated at the mRNA level as early as 4 h after T cell activation. The up-regulation of IL-4 mRNA was mediated by c-Maf, Jun B, and Gata3 as demonstrated by increases in their protein expression and DNA-binding activities. In contrast, the expression and DNA-binding activities of T-bet, FosB, C-Fos, Jun D, Fra-1, Fra-2, and c-Jun all were identical in wild-type and TG CD4 T cells. Immunological assays showed that increased IL-4 levels induced greater production of IgE. Thus, the S1P-S1P(1) axis specifically up-regulates c-Maf, Jun B, and Gata3, which consequently enhance IL-4 production that may lead to a Th2 phenotype.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
  • Sphingosine 1-phosphate receptor modulator fingolimod (FTY720) does not promote remyelination in vivo. 21740973

    The sphingosine 1-phosphate (S1P) receptor modulators have emerged as a new therapeutic opportunity paradigm for the treatment of immune-mediated demyelinating diseases such as multiple sclerosis (MS). The S1P analog fingolimod (FTY720) has been shown to alleviate disease burden in immune-mediated animal models of MS, and has been approved for treatment in clinical trials in patients with MS in the United States. While the immunological effects of FTY720 are well established, there is controversy in the literature regarding the contribution of FTY720 on myelin repair. Here, we directly assessed the impact of FTY720 on myelin repair in cuprizone and lysolecithin (LPC) demyelination models that have a minimal immunological component. FTY720 failed to promote remyelination in either animal model. These studies suggest that while FTY720 may be effective at modulating the immunological attack in MS, it may benefit from an add-on therapy to enhance the myelin repair required for long-term functional restoration in MS.
    Document Type:
    Reference
    Product Catalog Number:
    AB5320
    Product Catalog Name:
    Anti-NG2 Chondroitin Sulfate Proteoglycan Antibody
  • Sphingosine kinase 1 is required for mesothelioma cell proliferation: role of histone acetylation. 23028939

    Malignant pleural mesothelioma (MPM) is a devastating disease with an overall poor prognosis. Despite the recent advances in targeted molecular therapies, there is a clear and urgent need for the identification of novel mesothelioma targets for the development of highly efficacious therapeutics.In this study, we report that the expression of Sphingosine Kinase 1 (SphK1) protein was preferentially elevated in MPM tumor tissues (49 epithelioid and 13 sarcomatoid) compared to normal tissue (n = 13). In addition, we also observed significantly elevated levels of SphK1 and SphK2 mRNA and SphK1 protein expression in MPM cell lines such as H2691, H513 and H2461 compared to the non-malignant mesothelial Met5 cells. The underlying mechanism appears to be mediated by SphK1 induced upregulation of select gene transcription programs such as that of CBP/p300 and PCAF, two histone acetyl transferases (HAT), and the down regulation of cell cycle dependent kinase inhibitor genes such as p27Kip1 and p21Cip1. In addition, using immunoprecipitates of anti-acetylated histone antibody from SphK inhibitor, SphK-I2 treated Met5A and H2691 cell lysates, we also showed activation of other cell proliferation related genes, such as Top2A (DNA replication), AKB (chromosome remodeling and mitotic spindle formation), and suppression of p21 CIP1 and p27KIP1. The CDK2, HAT1 and MYST2 were, however, unaffected in the above study. Using SphK inhibitor and specific siRNA targeting either SphK1 or SphK2, we also unequivocally established that SphK1, but not SphK2, promotes H2691 mesothelioma cell proliferation. Using a multi-walled carbon nanotubes induced peritoneal mesothelioma mouse model, we showed that the SphK1-/- null mice exhibited significantly less inflammation and granulamatous nodules compared to their wild type counterparts.The lipid kinase SphK1 plays a positive and essential role in the growth and development of malignant mesothelioma and is therefore a likely therapeutic target.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Sphingosine 1-phosphate lyase deficiency disrupts lipid homeostasis in liver. 20097939

    The cleavage of sphingoid base phosphates by sphingosine-1-phosphate (S1P) lyase to produce phosphoethanolamine and a fatty aldehyde is the final degradative step in the sphingolipid metabolic pathway. We have studied mice with an inactive S1P lyase gene and have found that, in addition to the expected increase of sphingoid base phosphates, other sphingolipids (including sphingosine, ceramide, and sphingomyelin) were substantially elevated in the serum and/or liver of these mice. This latter increase is consistent with a reutilization of the sphingosine backbone for sphingolipid synthesis due to its inability to exit the sphingolipid metabolic pathway. Furthermore, the S1P lyase deficiency resulted in changes in the levels of serum and liver lipids not directly within the sphingolipid pathway, including phospholipids, triacyglycerol, diacylglycerol, and cholesterol. Even though lipids in serum and lipid storage were elevated in liver, adiposity was reduced in the S1P lyase-deficient mice. Microarray analysis of lipid metabolism genes in liver showed that the S1P lyase deficiency caused widespread changes in their expression pattern, with a significant increase in the expression of PPARgamma, a master transcriptional regulator of lipid metabolism. However, the mRNA expression of the genes encoding the sphingosine kinases and S1P phosphatases, which directly control the levels of S1P, were not significantly changed in liver of the S1P lyase-deficient mice. These results demonstrate that S1P lyase is a key regulator of the levels of multiple sphingolipid substrates and reveal functional links between the sphingolipid metabolic pathway and other lipid metabolic pathways that may be mediated by shared lipid substrates and changes in gene expression programs. The disturbance of lipid homeostasis by altered sphingolipid levels may be relevant to metabolic diseases.
    Document Type:
    Reference
    Product Catalog Number:
    ABS528
    Product Catalog Name:
    Anti-S1P lyase Antibody
  • Sphingosine kinase 1 regulates the expression of proinflammatory cytokines and nitric oxide in activated microglia. 20036321

    Microglial activation has been implicated as one of the causative factors for neuroinflammation in various neurodegenerative diseases. The sphingolipid metabolic pathway plays an important role in inflammation, cell proliferation, survival, chemotaxis, and immunity in peripheral macrophages. In this study, we demonstrate that sphingosine kinase1 (SphK1), a key enzyme of the sphingolipid metabolic pathway, and its receptors are expressed in the mouse BV2 microglial cells and SphK1 alters the expression and production of proinflammatory cytokines and nitric oxide in microglia treated with lipopolysaccharide (LPS). LPS treatment increased the SphK1 mRNA and protein expression in microglia as revealed by the RT-PCR, Western blot and immunofluorescence. Suppression of SphK1 by its inhibitor, N, N Dimethylsphingosine (DMS), or siRNA resulted in decreased mRNA expression of TNF-alpha, IL-1beta, and iNOS and release of TNF-alpha and nitric oxide (NO) in LPS-activated microglia. Moreover, addition of sphingosine 1 phosphate (S1P), a breakdown product of sphingolipid metabolism, increased the expression levels of TNF-alpha, IL-1beta and iNOS and production of TNF-alpha and NO in activated microglia. Hence to summarize, suppression of SphK1 in activated microglia inhibits the production of proinflammatory cytokines and NO and the addition of exogenous S1P to activated microglia enhances their inflammatory responses. Since the chronic proinflammatory cytokine production by microglia has been implicated in neuroinflammation, modulation of SphK1 and S1P in microglia could be looked upon as a future potential therapeutic method in the control of neuroinflammation in neurodegenerative diseases.
    Document Type:
    Reference
    Product Catalog Number:
    AQ132F
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, F(ab')2, FITC conjugate
  • Sphingosine regulates the transcription of CYP17 by binding to steroidogenic factor-1. 16887917

    Steroidogenic factor (SF1, Ad4BP, NR5A1) is a nuclear receptor that is essential for steroid hormone biosynthesis and endocrine development. Recent crystallographic studies have found that phospholipids are ligands for SF1. In the present study, our aim was to identify endogenous ligands for SF1 and characterize their functional significance in mediating cAMP-dependent transcription of human CYP17. Using tandem mass spectrometry, we show that in H295R adrenocortical cells, SF1 is bound to sphingosine (SPH) and lyso-sphingomyelin (lysoSM) under basal conditions and that cAMP stimulation decreases the amount of SPH and lysoSM bound to the receptor. Silencing both acid and neutral ceramidases using small interfering RNA induces CYP17 mRNA expression, suggesting that SPH acts as an inhibitory ligand. SPH antagonized the ability of cAMP and the coactivator steroid receptor coactivator-1 to increase CYP17 reporter gene activity. These studies demonstrate that SPH is a bonafide endogenous ligand for SF1 and a negative regulator of CYP17 gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    64-101
    Product Catalog Name:
    siIMPORTER™
  • Sphingosine and FTY720 directly bind pro-survival 14-3-3 proteins to regulate their function. 20403428

    The dimeric 14-3-3 protein family protects cells from apoptosis by regulating pro-apoptotic molecules. Conversely, the cationic lipid sphingosine is associated with physiological apoptosis and induces apoptosis in its own right by a largely undefined mechanism. We show here that sphingosine and 14-3-3 interact directly in the control of cell death. The binding of sphingosine to 14-3-3 proteins renders them phosphorylatable at the dimer interface, an event that abolishes the pro-survival signalling of 14-3-3. Sphingosine kinase 1 reduces availability of sphingosine for interaction with 14-3-3, thus inhibiting cell death and providing a new mechanistic insight into the role of this enzyme in cell survival and oncogenesis. Importantly, FTY720, a sphingosine analogue with apoptotic activity that is currently in phase III clinical trials for multiple sclerosis, acts in a similar manner to sphingosine in potentiating 14-3-3 phosphorylation. The biological significance of 14-3-3 phosphorylation was demonstrated with a non-phosphorylatable 14-3-3zeta mutant which retarded apoptosis induced by sphingosine and FTY720. These results demonstrate that direct association of sphingosine with 14-3-3 is required for 14-3-3 phosphorylation, and that this axis can control cell fate. Furthermore, these results suggest a new therapeutic activity for FTY720 as an anti-cancer agent based on this mechanism.
    Document Type:
    Reference
    Product Catalog Number:
    05-100
  • Sphingosine kinase 1 and sphingosine 1-phosphate receptor 3 are functionally upregulated on astrocytes under pro-inflammatory conditions. 21887342

    Reactive astrocytes are implicated in the development and maintenance of neuroinflammation in the demyelinating disease multiple sclerosis (MS). The sphingosine kinase 1 (SphK1)/sphingosine1-phosphate (S1P) receptor signaling pathway is involved in modulation of the inflammatory response in many cell types, but the role of S1P receptor subtype 3 (S1P(3)) signaling and SphK1 in activated rat astrocytes has not been defined.Using immunohistochemistry we observed the upregulation of S1P(3) and SphK1 expression on reactive astrocytes and SphK1 on macrophages in MS lesions. Increased mRNA and protein expression of S1P(3) and SphK1, as measured by qPCR and Western blotting respectively, was observed after treatment of rat primary astrocyte cultures with the pro-inflammatory stimulus lipopolysaccharide (LPS). Activation of SphK by LPS stimulation was confirmed by SphK activity assay and was blocked by the use of the SphK inhibitor SKI (2-(p-hydroxyanilino)-4-(p-chlorphenyl) thiazole. Treatment of astrocytes with a selective S1P(3) agonist led to increased phosphorylation of extracellular signal-regulated kinase (ERK)-1/2), which was further elevated with a LPS pre-challenge, suggesting that S1P(3) upregulation can lead to increased functionality. Moreover, astrocyte migration in a scratch assay was induced by S1P and LPS and this LPS-induced migration was sensitive to inhibition of SphK1, and independent of cell proliferation. In addition, S1P induced secretion of the potentially neuroprotective chemokine CXCL1, which was increased when astrocytes were pre-challenged with LPS. A more prominent role of S1P(3) signaling compared to S1P(1) signaling was demonstrated by the use of selective S1P(3) or S1P(1) agonists.In summary, our data demonstrate that the SphK1/S1P(3) signaling axis is upregulated when astrocytes are activated by LPS. This signaling pathway appears to play a role in the establishment and maintenance of astrocyte activation. Upregulation of the pathway in MS may be detrimental, e.g. through enhancing astrogliosis, or beneficial through increased remyelination via CXCL1.
    Document Type:
    Reference
    Product Catalog Number:
    MAB382
    Product Catalog Name:
    Anti-Myelin Basic Protein Antibody, a.a. 129-138, clone 1
  • Sphingosine Phosphate Lyase Regulates Murine Embryonic Stem Cell Proliferation and Pluripotency through an S1P2/STAT3 Signaling Pathway. 24619572

    Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that activates a family of G protein coupled-receptors (GPCRs) implicated in mammalian development, angiogenesis, immunity and tissue regeneration. S1P functions as a trophic factor for many cell types, including embryonic stem cells (ESCs). Sphingosine phosphate lyase (SPL) is an intracellular enzyme that catalyzes the irreversible degradation of S1P. We found SPL to be highly expressed in murine ESCs (mESCs). To investigate the role of SPL in mESC biology, we silenced SPL in mESCs via stable transfection with a lentiviral SPL-specific short hairpin RNA (shRNA) construct. SPL-knockdown (SPL-KD) mESCs showed a 5-fold increase in cellular S1P levels, increased proliferation rates and high expression of cell surface pluripotency markers SSEA1 and OCT4 compared to vector control cells. Compared to control mESCs, SPL-KD cells showed robust activation of STAT3 and a 10-fold increase in S1P2 expression. Inhibition of S1P2 or STAT3 reversed the proliferation and pluripotency phenotypes of SPL-KD mESCs. Further, inhibition of S1P2 attenuated, in a dose-dependent fashion, the high levels of OCT4 and STAT3 activation observed in SPL-KD mESCs. Finally, we showed that SPL-KD cells are capable of generating embryoid bodies from which muscle stem cells, called satellite cells, can be isolated. These findings demonstrate an important role for SPL in ESC homeostasis and suggest that SPL inhibition could facilitate ex vivo ESC expansion for therapeutic purposes.
    Document Type:
    Reference
    Product Catalog Number:
    AB5731
    Product Catalog Name:
    Anti-Nanog Antibody, NT
  • Sphingosine 1-phosphate potentiates human lung fibroblast chemotaxis through the S1P2 receptor. 18367729

    Migration of fibroblasts plays an essential role in tissue repair after injury. Sphingosine 1-phosphate (S1P) is a multifunctional mediator released by many cells that can be released in inflammation and after injury. This study evaluated the effect of S1P on fibroblast chemotaxis toward fibronectin. S1P alone did not affect fibroblast migration, but S1P enhanced fibronectin-directed chemotaxis in a concentration-dependent manner. The effect of S1P was not mimicked by dihydro (dh) S1P or the S1P(1) receptor agonist SEW2871. S1P augmentation of fibroblast chemotaxis, however, was completely blocked by JTE-013, an S1P(2) antagonist, but not by suramin, an S1P(3) antagonist. Suppression of the S1P(2) receptor by small interfering (si)RNA also completely blocked S1P augmentation of fibroblast chemotaxis to fibronectin. S1P stimulated Rho activation and focal adhesion kinase (FAK) phosphorylation, and these were also significantly inhibited by the S1P(2) receptor antagonist (JTE-013) or by S1P(2) siRNA. Further, the potentiation of S1P signaling was blocked by the Rho-kinase inhibitor Y-27632 in a concentration-dependent manner. Inhibition of FAK with siRNA reduced basal chemotaxis toward fibronectin slightly but significantly, and almost completely blocked S1P augmented chemotaxis. These results suggest that S1P-augmented fibroblast chemotaxis toward fibronectin depends on the S1P(2) receptor and requires Rho and Rho-kinase, and FAK phosphorylation. By augmenting fibroblast recruitment, S1P has the potential to modulate tissue repair after injury. The pathways by which S1P mediates this effect, therefore, represent a potential therapeutic target to affect tissue repair and remodeling.
    Document Type:
    Reference
    Product Catalog Number:
    17-294
    Product Catalog Name:
    Rho Activation Assay Kit