Millipore Sigma Vibrant Logo
Attention: We have moved. Merck Millipore products are no longer available for purchase on MerckMillipore.com.Learn More
 

glaucoma


75 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor. 18421092

    To investigate the possibility that Angiopoietin-like 7 (ANGPTL7) protein is involved in the pathogenesis of glaucoma.Primary human trabecular meshwork (TM) cells and corneoscleral explants were stimulated with either dexamethasone (DEX) or transforming growth factor beta (TGFbeta), and ANGPTL7 protein secreted into culture medium was determined by Western blot analysis. The effect of stable overexpression of ANGPTL7 in transfected immortalized TM cell lines on collagen expression was investigated by immunocytochemistry. Localization of ANGPTL7 protein in human eyes was determined by immunohistochemistry. The concentration of ANGPTL7 protein in aqueous humor (AH) from patients with glaucoma and control patients was compared by Western blot analysis. The beagle model of primary open-angle glaucoma (POAG) was used to correlate ANGPTL7 protein levels in canine AH with disease progression.TGFbeta and DEX stimulated secretion of ANGPTL7 protein by TM cells and corneoscleral explants. Overexpression of ANGPTL7 by immortalized TM cell lines increased expression of type I collagen. Expression of ANGPTL7 protein was located in the corneal stroma, near the limbus, and throughout the sclera, with lower expression in the TM. In the lamina cribrosa, ANGPTL7 expression was associated with the cribriform plates. The concentration of ANGPTL7 protein was elevated in AH from patients with glaucoma and increased as disease progressed in POAG beagle dogs.Induction of ANGPTL7 secretion by glaucoma stimuli and increased concentration of ANGPTL7 in glaucomatous AH suggest that ANGPTL7 is overexpressed in glaucoma. Since overexpression of ANGPTL7 increases collagen expression, a potential disease mechanism, ANGPTL7 could have a pathogenic role in glaucoma, and may serve as a potential therapeutic target.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • An alteration in the lateral geniculate nucleus of experimental glaucoma monkeys: in vivo positron emission tomography imaging of glial activation. 22299044

    We examined lateral geniculate nucleus (LGN) degeneration as an indicator for possible diagnosis of glaucoma in experimental glaucoma monkeys using positron emission tomography (PET). Chronic intraocular pressure (IOP) elevation was induced by laser trabeculoplasty in the left eyes of 5 cynomolgus monkeys. Glial cell activation was detected by PET imaging with [(11)C]PK11195, a PET ligand for peripheral-type benzodiazepine receptor (PBR), before and at 4 weeks after laser treatment (moderate glaucoma stage). At mild, moderate, and advanced experimental glaucoma stages (classified by histological changes based on the extent of axonal loss), brains were stained with cresyl violet, or antibodies against PBR, Iba-1 (a microglial marker), and GFAP (an activated astrocyte marker). In laser-treated eyes, IOP was persistently elevated throughout all observation periods. PET imaging showed increased [(11)C]PK11195 binding potential in the bilateral LGN at 4 weeks after laser treatment; the increase in the ipsilateral LGN was statistically significant (Pless than 0.05, n = 4). Immunostaining showed bilateral activations of microglia and astrocytes in LGN layers receiving input from the laser-treated eye. PBR-positive cells were observed in LGN layers receiving input from laser-treated eye at all experimental glaucoma stages including the mild glaucoma stage and their localization coincided with Iba-1 positive microglia and GFAP-positive astrocytes. These data suggest that glial activation occurs in the LGN at a mild glaucoma stage, and that the LGN degeneration could be detected by a PET imaging with [(11)C]PK11195 during the moderate experimental glaucoma stage after unilateral ocular hypertension. Therefore, activated glial markers such as PBR in the LGN may be useful in noninvasive molecular imaging for diagnosis of glaucoma.
    Document Type:
    Reference
    Product Catalog Number:
    MAB360
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Association of HK2 and NCK2 with normal tension glaucoma in the Japanese population. 23349798

    Although family studies and genome-wide association studies have shown that genetic factors play a role in glaucoma, it has been difficult to identify the specific genetic variants involved. We tested 669 single nucleotide polymorphisms (SNPs) from the region of chromosome 2 that includes the GLC1B glaucoma locus for association with primary open-angle glaucoma (POAG) and normal tension glaucoma (NTG) in the Japanese population. We performed a two-stage case-control study. The first cohort consisted of 123 POAG cases, 121 NTG cases and 120 controls: the second cohort consisted of 187 POAG cases, 286 NTG cases, and 271 controls. Out of six SNPs showing significant association with POAG in the first round screening, seven SNPs were tested in the second round. Rs678350 in the HK2 gene coding sequence showed significant allelic (p=0.0027 in Stage Two, 2.7XE-4 in meta-analysis) association with POAG, and significant allelic (p=4.7XE-4 in Stage Two, 1.0XE-5 in meta-analysis) association with NTG. Although alleles in the TMEM182 gene did not show significant association with glaucoma in the second round, subjects with the A/A allele in TMEM182 rs869833 showed worse visual field mean deviation (p=0.01). Even though rs2033008 in the NCK2 gene coding sequence did not show significant association in the first round, it had previously shown association with NTG so it was tested for association with NTG in round 2 (p=0.0053 in Stage Two). Immunohistochemistry showed that both HK2 and NCK2 are expressed in the retinal ganglion cell layer. Once multi-testing was taken into account, only HK2 showed significant association with POAG and NTG in Stage Two. Our data also support previous reports of NCK2 association with NTG, and raise questions about what role TMEM182 might play in phenotypic variability. Our data suggest that HK2 may play an important role in NTG in the Japanese population.
    Document Type:
    Reference
    Product Catalog Number:
    MAB360
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • Neurosteroids are endogenous neuroprotectants in an ex vivo glaucoma model. 25406290

    Allopregnanolone is a neurosteroid and powerful modulator of neuronal excitability. The neuroprotective effects of allopregnanolone involve potentiation of γ-aminobutyric acid (GABA) inhibitory responses. Although glutamate excitotoxicity contributes to ganglion cell death in glaucoma, the role of GABA in glaucoma remains uncertain. The aim of this study was to determine whether allopregnanolone synthesis is induced by high pressure in the retina and whether allopregnanolone modulates pressure-mediated toxicity.Ex vivo rat retinas were exposed to hydrostatic pressure (10, 35, and 75 mm Hg) for 24 hours. Endogenous allopregnanolone production was determined by liquid chromatography and tandem mass spectrometry (LC-MS/MS) and immunochemistry. We also examined the effects of allopregnanolone, finasteride, and dutasteride (inhibitors of 5α-reductase), picrotoxin (a GABA(A) receptor antagonist), and D-2-amino-5-phosphonovalerate (APV, a broad-spectrum N-methyl-D-aspartate receptor [NMDAR] antagonist).Pressure loading at 75 mm Hg significantly increased allopregnanolone levels as measured by LC-MS/MS. Elevated hydrostatic pressure also increased neurosteroid immunofluorescence, especially in the ganglion cell layer and inner nuclear layers. Staining was negligible at lower pressures. Enhanced allopregnanolone levels and immunostaining were substantially blocked by finasteride, but more effectively inhibited by dutasteride and APV. Administration of exogenous allopregnanolone suppressed pressure-induced axonal swelling in a concentration-dependent manner, while picrotoxin overcame these neuroprotective effects.These results indicate that the synthesis of allopregnanolone is enhanced mainly via NMDARs in the pressure-loaded retina, and that allopregnanolone diminishes pressure-mediated retinal degeneration via GABAA receptors. Allopregnanolone and other related neurosteroids may serve as potential novel therapeutic targets for the prevention of pressure-induced retinal damage in glaucoma.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3400
    Product Catalog Name:
    Anti-Vimentin Antibody, clone V9
  • Activation of autophagy induces retinal ganglion cell death in a chronic hypertensive glaucoma model. 22476098

    Autophagy is reported to have important roles in relation to regulated cell death pathways and neurodegeneration. This study used chronic hypertensive glaucoma rat model to investigate whether the autophagy pathway has a role in the apoptosis of retinal ganglion cells (RGCs) after chronic intraocular pressure (IOP) elevation. Under electron microscopy, autophagosomes were markedly accumulated in the dendrites and cytoplasm of RGCs after IOP elevation. Western blot analysis showed that LC3-II/LC3-I and beclin-1 were upregulated throughout the 8-weeks period after IOP elevation. The pattern of LC3 immunostaining showed autophagy activation in the cytoplasm of RGCs to increase and peak at 4 weeks after IOP elevation. Most of these LC3B-positive RGCs underwent apoptosis by terminal deoxynucleotidyltransferase-mediated biotinylated UTP nick end labeling, and inhibition of autophagy with 3-methyladenine decreased RGC apoptosis. The activated pattern shows that autophagy is initially activated in the dendrites of the RGCs, but, thereafter autophagy is mainly activated in the cytoplasm of RGCs. This may show that autophagy is differently regulated in different compartments of the neuron. This present study showed that autophgy is activated in RGCs and has a role in autophagic cell death after chronic IOP elevation.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • Rescue of retinal function by BDNF in a mouse model of glaucoma. 25536045

    Vision loss in glaucoma is caused by progressive dysfunction of retinal ganglion cells (RGCs) and optic nerve atrophy. Here, we investigated the effectiveness of BDNF treatment to preserve vision in a glaucoma experimental model. As an established experimental model, we used the DBA/2J mouse, which develops chronic intraocular pressure (IOP) elevation that mimics primary open-angle glaucoma (POAG). IOP was measured at different ages in DBA/2J mice. Visual function was monitored using the steady-state Pattern Electroretinogram (P-ERG) and visual cortical evoked potentials (VEP). RGC alterations were assessed using Brn3 immunolabeling, and confocal microscope analysis. Human recombinant BDNF was dissolved in physiological solution (0.9% NaCl); the effects of repeated intravitreal injections and topical eye BDNF applications were independently evaluated in DBA/2J mice with ocular hypertension. BDNF level was measured in retinal homogenate by ELISA and western blot. We found a progressive decline of P-ERG and VEP responses in DBA/2J mice between 4 and 7 months of age, in relationship with the development of ocular hypertension and the reduction of Brn3 immunopositive RGCs. Conversely, repeated intravitreal injections (BDNF concentration = 2 µg/µl, volume = 1 µl, for each injection; 1 injection every four days, three injections over two weeks) and topical eye application of BDNF eye-drops (12 µg/µl, 5 µl eye-drop every 48 h for two weeks) were able to rescue visual responses in 7 month DBA/2J mice. In particular, BDNF topical eye treatment recovered P-ERG and VEP impairment increasing the number of Brn3 immunopositive RGCs. We showed that BDNF effects were independent of IOP reduction. Thus, topical eye treatment with BDNF represents a promisingly safe and feasible strategy to preserve visual function and diminish RGC vulnerability to ocular hypertension.
    Document Type:
    Reference
    Product Catalog Number:
    AB1534SP
    Product Catalog Name:
    Anti-Brain Derived Neurotrophic Factor Antibody
  • Effects of TGF-beta2, BMP-4, and gremlin in the trabecular meshwork: implications for glaucoma. 17325163

    The primary causative factor of primary open-angle glaucoma (POAG) is elevated intraocular pressure (IOP) due to increased aqueous humor (AH) outflow resistance, which is associated with morphologic and biochemical changes in the trabecular meshwork (TM). Patients with glaucoma have elevated levels of transforming growth factor (TGF)-beta2 in their AH, and TGF-beta has been shown to increase TM extracellular matrix (ECM) production. The bone morphogenetic protein (BMP) signaling pathway modifies TGF-beta signaling in several different tissues, and a prior study demonstrated that TM cells and tissues express members of the BMP gene family. The purpose of this study was to determine whether BMPs can alter TGF-beta2 signaling in the TM and whether there are defects in BMP signaling in glaucoma.ELISA, Western immunoblot analysis, and immunohistochemistry were used to evaluate the expression of BMP proteins in TM cells and tissues. ELISA was used to determine the effects of TGF-beta2 and BMPs on TM fibronectin (FN) secretion. Gene expression was determined by gene microarrays and quantitative (q)PCR. Perfusion-cultured human anterior segments were used to study the effects of altered BMP signaling on IOP.The human TM synthesized and secreted BMP-4 as well as expressed BMP receptor subtypes BMPRI and BMPRII. TM cells responded to exogenous BMP-4 by phosphorylating Smad signaling proteins. Cultured human TM cells treated with TGF-beta2 significantly increased FN levels, and BMP-4 blocked this FN induction. The expression of BMP family genes in normal and glaucomatous TM cells was profiled and significant elevation of mRNA and protein levels of the BMP antagonist gremlin were found in glaucomatous TM cells. In addition, Gremlin was present in human aqueous humor and in the perfusate medium of perfusion-cultured human eyes. Gremlin blocked the negative effect of BMP-4 on TGF-beta-induction of FN. Recombinant Gremlin added to the medium of ex vivo perfusion-cultured human eye anterior segments caused the glaucoma phenotype of elevated IOP.These results are consistent with the hypothesis that, in POAG, elevated expression of Gremlin by TM cells inhibits BMP-4 antagonism of TGF-beta2 and leads to increased ECM deposition and elevated IOP.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
  • Induced pluripotent stem cells restore function in a human cell loss model of open-angle glaucoma. 25377070

    Normally, trabecular meshwork (TM) and Schlemm's canal inner wall endothelial cells within the aqueous humor outflow pathway maintain intraocular pressure within a narrow safe range. Elevation in intraocular pressure, because of the loss of homeostatic regulation by these outflow pathway cells, is the primary risk factor for vision loss due to glaucomatous optic neuropathy. A notable feature associated with glaucoma is outflow pathway cell loss. Using controlled cell loss in ex vivo perfused human outflow pathway organ culture, we developed compelling experimental evidence that this level of cell loss compromises intraocular pressure homeostatic function. This function was restored by repopulation of the model with fresh TM cells. We then differentiated induced pluripotent stem cells (iPSCs) and used them to repopulate this cell depletion model. These differentiated cells (TM-like iPSCs) became similar to TM cells in both morphology and expression patterns. When transplanted, they were able to fully restore intraocular pressure homeostatic function. This successful transplantation of TM-like iPSCs establishes the conceptual feasibility of using autologous stem cells to restore intraocular pressure regulatory function in open-angle glaucoma patients, providing a novel alternative treatment option.
    Document Type:
    Reference
    Product Catalog Number:
    04-1117
  • Renin-angiotensin system regulates neurodegeneration in a mouse model of normal tension glaucoma. 25032856

    Glaucoma, one of the leading causes of irreversible blindness, is characterized by progressive degeneration of optic nerves and retinal ganglion cells (RGCs). In the mammalian retina, excitatory amino acid carrier 1 (EAAC1) is expressed in neural cells, including RGCs, and the loss of EAAC1 leads to RGC degeneration without elevated intraocular pressure (IOP). In the present study, we found that expressions of angiotensin II type 1 receptor (AT1-R) and Toll-like receptor 4 (TLR4) are increased in RGCs and retinal Müller glia in EAAC1-deficient (KO) mice. The orally active AT1-R antagonist candesartan suppressed TLR4 and lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) expressions in the EAAC1 KO mouse retina. Sequential in vivo retinal imaging and electrophysiological analysis revealed that treatment with candesartan was effective for RGC protection in EAAC1 KO mice without affecting IOP. In cultured Müller glia, candesartan suppressed LPS-induced iNOS production by inhibiting the TLR4-apoptosis signal-regulating kinase 1 pathway. These results suggest that the renin-angiotensin system is involved in the innate immune responses in both neural and glial cells, which accelerate neural cell death. Our findings raise intriguing possibilities for the management of glaucoma by utilizing widely prescribed drugs for the treatment of high blood pressure, in combination with conventional treatments to lower IOP.
    Document Type:
    Reference
    Product Catalog Number:
    MAB302
    Product Catalog Name:
    Anti-Glutamine Synthetase Antibody, clone GS-6
  • Early pro-inflammatory cytokine elevations in the DBA/2J mouse model of glaucoma. 26376776

    Neuroinflammation-astrogliosis, microglial activation, and changes in cytokine signaling-is a prominent feature of neurodegenerative disorders. Glaucoma is a group of chronic neurodegenerative conditions that make up the leading cause of irreversible blindness worldwide. Neuroinflammation has been postulated to play a significant role in the pathogenesis and progression of glaucomatous neurodegeneration. Though much is known regarding inflammation in the eye in glaucoma, little is known about cytokine activity outside of the retina where pathologies develop early.We traced the primary visual projection from the eye to the superior colliculus (SC) in DBA/2J and DBA/2J.Gpnmb (+) (control) mice using the anterograde tracer cholera toxin-B (CTB) to assay axonal transport deficits. Forty-eight hours later, visual structures were microdissected from fresh tissue based on transport outcome. Using magnetic bead multiplexing assays, we measured levels of 20 cytokines in the retina, proximal and distal optic nerves, CTB-positive and negative SC subdivisions, cerebellum, and serum at different ages representing different stages of pathology.Pro- and anti-inflammatory cytokine levels in mice often changed in the same direction based on strain, age, and tissue. Significant elevations in retinal pro-inflammatory cytokines were observed in young DBA/2J mice compared to controls, followed by an age-dependent decrease in the DBA/2J mice. Proximal optic nerve of young DBA/2J mice showed a 50 % or greater decrease in levels of certain cytokines compared to older DBA/2J cohorts and controls, while both proximal and distal optic nerve of DBA/2Js showed elevations in IL-1β at all ages compared to controls. Pro-inflammatory cytokine IL-6 levels varied in accordance with transport outcome in the SC: IL-6 was elevated 44-80 % in glaucomatous DBA/2J collicular regions deficient in anterograde transport from retinal ganglion cells (RGCs) compared to areas with intact transport.Dysregulation of cytokine signaling in the RGC projection of DBA/2J mice was evident early in distal retinal targets, well before intraocular pressure elevation or axonal degeneration begins.
    Document Type:
    Reference
    Product Catalog Number:
    MAB360
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5