- Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction.
Actions of cAMP on calcium sensitization in human detrusor smooth muscle contraction.
To clarify the effect of cAMP on the Ca(2+) -sensitized smooth muscle contraction in human detrusor, as well as the role of novel exchange protein directly activated by cAMP (Epac) in cAMP-mediated relaxation. All experimental protocols to record isometric tension force were performed using α-toxin-permeabilized human detrusor smooth muscle strips. The mechanisms of cAMP-mediated suppression of Ca(2+) sensitization activated by 10 μm carbachol (CCh) and 100 μm GTP were studied using a selective rho kinase (ROK) inhibitor, Y-27632, and a selective protein kinase C (PKC) inhibitor, GF-109203X. The relaxation mechanisms were further probed using a selective protein kinase A (PKA) activator, 6-Bnz-cAMP and a selective Epac activator, 8-pCPT-2'-O-Me-cAMP. We observed that CCh-induced Ca(2+) sensitization was inhibited by cAMP in a concentration-dependent manner. GF-109203X (10 μm) but not Y-27632 (10 μm) significantly enhanced the relaxation effect induced by cAMP (100 μm). 6-Bnz-cAMP (100 μm) predominantly decreased the tension force in comparison with 8-pCPT-2'-O-Me-cAMP (100 μm). We showed that cAMP predominantly inhibited the ROK pathway but not the PKC pathway. The PKA-dependent pathway is dominant, while Epac plays a minor role in human detrusor smooth muscle Ca(2+) sensitization.