Millipore Sigma Vibrant Logo
 

Cell Signaling Technology


603 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Isoelectric focusing technology quantifies protein signaling in 25 cells. 17053065

    A previously undescribed isoelectric focusing technology allows cell signaling to be quantitatively assessed in less than 25 cells. High-resolution capillary isoelectric focusing allows isoforms and individual phosphorylation forms to be resolved, often to baseline, in a 400-nl capillary. Key to the method is photochemical capture of the resolved protein forms. Once immobilized, the proteins can be probed with specific antibodies flowed through the capillary. Antibodies bound to their targets are detected by chemiluminescence. Because chemiluminescent substrates are flowed through the capillary during detection, localized substrate depletion is overcome, giving excellent linearity of response across several orders of magnitude. By analyzing pan-specific antibody signals from individual resolved forms of a protein, each of these can be quantified, without the problems associated with using multiple antibodies with different binding avidities to detect individual protein forms.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
  • A conserved IFN-alpha receptor tyrosine motif directs the biological response to type I IFNs. 18390731

    Mammalian type I IFNs (IFN-Is) mediate their potent biological activities through an evolutionarily conserved IFN-alpha receptor (IFNAR), consisting of IFNAR1 and IFNAR2. These two chains direct the rapid activation of two founding members of the STAT family of transcription factors, STAT1 and STAT2. To understand how IFN-Is direct the recruitment and activation of STATs, a series of mutant murine IFNAR1 and IFNAR2 receptors were generated and evaluated in IFNAR1 and IFNAR2 knockout cells. These studies reveal that a single conserved IFNAR2 tyrosine, Y(510), plays a critical role in directing the IFN-I-dependent activation of STAT1 and STAT2, both in murine fibroblasts and macrophages. A second IFNAR2 tyrosine, Y(335), plays a more minor role. Likewise, Y(510) > Y(335) play a critical role in the induction of genes and antiviral activity traditionally associated with IFN-Is.
    Document Type:
    Reference
    Product Catalog Number:
    07-224
    Product Catalog Name:
    Anti-phospho-STAT2 (Tyr689) Antibody
  • Temporal assessment of caspase activation in experimental models of focal and global ischemia. 12915250

    Rodent models of focal and global ischemia were used to examine caspase activation. Several readouts were employed on identical tissue to provide correlative measurement of caspase induction, activation and enzymatic activity. In a rat focal ischemia model, caspase-3 enzymatic activity, as recorded by DEVD-AMC cleavage, peaked in penumbral cortex at 6-12 h following ischemia, correlating with increases in caspase 3-cleaved substrates of PARP and alpha-spectrin and subsequent disappearance of caspase-3 zymogen. Although induction of caspases 8 and 2 proteins was detectable as early as 6 h following ischemia, examination of the same tissues for caspase 8 or 2 enzymatic activities did not show significant modulation up to 12 h after ischemic insult. Caspase 9 induction was evident only after 24 h postischemia and did not correlate with elevated LDHD-AMC cleavage. Following global ischemia in gerbils, levels of caspase-3 enzyme activity peaked at 12 h in hippocampal tissue extracts. Cleaved caspase-3 signal was prominent in NeuN-positive layers in the CA1 region 6-12 h following ischemia. Interestingly, strong caspase-3 immunoreactivity was also detected in the subgranular zone of the dentate gyrus, a known region of ischemia-induced neurogenesis. Caspase-3 activation may be responsible for the loss of these cells, thereby hindering the endogenous recovery process.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1622
    Product Catalog Name:
    Anti-Spectrin alpha chain (nonerythroid) Antibody, clone AA6
  • Progesterone potentiates calcium release through IP3 receptors by an Akt-mediated mechanism in hippocampal neurons. 19081133

    Progesterone (P4) is a steroid hormone that plays multiple roles in the central nervous system (CNS) including promoting neuroprotection. However, the precise mechanisms involved in its neuroprotective effects are still unknown. Given that the regulation of the intracellular calcium (Ca(2+)) concentration is critical for cell survival, we determined if inositol 1, 4, 5-trisphosphate receptors (IP(3)Rs) are relevant targets of P4. Using primary hippocampal neurons, we tested the hypothesis that P4 controls the gain of IP3R-mediated intracellular Ca(2+) signaling in neurons and characterized the subcellular distribution and phosphorylation of potential signaling intermediates involved in P4s actions. Our results reveal that P4 treatment altered the intensity and distribution of IP3R immunoreactivity and induced the nuclear translocation of phosphorylated Akt. Further, P4 potentiated IP(3)R-mediated intracellular Ca(2+) responses. These results suggest a potential involvement of P4 in particular and of steroid hormone signaling pathways in general in the control of intracellular Ca(2+) signaling and its related functions.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism. 22693207

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • CG0006, a novel histone deacetylase inhibitor, induces breast cancer cell death via histone-acetylation and chaperone-disrupting pathways independent of ER status. 21184271

    We previously reported that CG0006, a novel hydroxamate-based pan-histone deacetylase inhibitor (HDACI), suppresses the growth of human cancer cells. Here, we tested the ability of CG0006 to inhibit breast cancer cell proliferation in relation to estrogen receptor (ER) status, and examined changes in the expression of cell-cycle regulatory proteins. CG0006 effects on the proliferation of multiple human cancer cell lines were tested using MTT and MTS assays. Changes in estrogen-signaling proteins and cell-cycle regulatory proteins were examined by western blotting and quantitative RT-PCR, and cell-cycle effects were tested using flow cytometry. CG0006 increased histone H3 and H4 acetylation, up-regulated p21 protein, and promoted cell-cycle arrest, inducing G(2)/M-phase accumulation in ER-positive MCF7 cells, and G(1)- and G(2)/M-phase accumulation in ER-negative MDA-MB-231 cells. In both cell types, CG0006 treatment (1 μM) reduced the levels of the estrogen-signaling proteins ERα and cyclin D1, and promoted massive degradation of cell-cycle regulatory proteins. CG0006 down-regulated the histone deacetylase HDAC6 at the protein level in association with a subsequent increase in Hsp90 and α-tubulin acetylation. HDAC6 depletion using small interfering RNA produced a protein-degradation phenotype similar to that of CG0006 treatment. These findings suggest that CG0006 inhibits breast cancer cell growth by two different pathways: a histone acetylation-dependent pathway, and a non-epigenetic pathway that disrupts chaperone function.
    Document Type:
    Reference
    Product Catalog Number:
    06-748
  • Mechanistic insight into the ability of American ginseng to suppress colon cancer associated with colitis. 20729391

    We have recently shown that American ginseng (AG) prevents and treats mouse colitis. Because both mice and humans with chronic colitis have a high colon cancer risk, we tested the hypothesis that AG can be used to prevent colitis-driven colon cancer. Using the azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model of ulcerative colitis, we show that AG can suppress colon cancer associated with colitis. To explore the molecular mechanisms of the anticancer effects of AG, we also carried out antibody array experiments on colon cells isolated at a precancerous stage. We found there were 82 protein end points that were either significantly higher (41 proteins) or significantly lower (41 proteins) in the AOM + DSS group compared with the AOM-alone (control) group. In contrast, there were only 19 protein end points that were either significantly higher (10 proteins) or significantly lower (9 proteins) in the AOM + DSS + AG group compared with the AOM-alone (control) group. Overall, these results suggest that AG keeps the colon environment in metabolic equilibrium when mice are treated with AOM + DSS and gives insight into the mechanisms by which AG protects from colon cancer associated with colitis.
    Document Type:
    Reference
    Product Catalog Number:
    07-1224
    Product Catalog Name:
    Anti-PP6C Antibody
  • Neuronal death resulting from targeted disruption of the Snf2 protein ATRX is mediated by p53. 19020049

    ATRX, a chromatin remodeling protein of the Snf2 family, participates in diverse cellular functions including regulation of gene expression and chromosome alignment during mitosis and meiosis. Mutations in the human gene cause alpha thalassemia mental retardation, X-linked (ATR-X) syndrome, a rare disorder characterized by severe cognitive deficits, microcephaly and epileptic seizures. Conditional inactivation of the Atrx gene in the mouse forebrain leads to neonatal lethality and defective neurogenesis manifested by increased cell death and reduced cellularity in the developing neocortex and hippocampus. Here, we show that Atrx-null forebrains do not generate dentate granule cells due to a reduction in precursor cell number and abnormal migration of differentiating granule cells. In addition, fewer GABA-producing interneurons are generated that migrate from the ventral telencephalon to the cortex and hippocampus. Staining for cleaved caspase 3 demonstrated increased apoptosis in both the hippocampal hem and basal telencephalon concurrent with p53 pathway activation. Elimination of the tumor suppressor protein p53 in double knock-out mice rescued cell death in the embryonic telencephalon but only partially ameliorated the Atrx-null phenotypes at birth. Together, these findings show that ATRX deficiency leads to p53-dependent neuronal apoptosis which is responsible for some but not all of the phenotypic consequences of ATRX deficiency in the forebrain.
    Document Type:
    Reference
    Product Catalog Number:
    AB1583
    Product Catalog Name:
    Anti-Neuropeptide Y Antibody
  • Differential regulation of stimulated glucose transport by free fatty acids and PPARα or -δ agonists in cardiac myocytes. 22297301

    Stimulation of glucose transport in response to insulin or metabolic stress is an important determinant of cardiac myocyte function and survival, particularly during ischemia-reperfusion episodes. The impact of dyslipidemia and its consequence PPAR activation on stimulated glucose transport in cardiac myocytes remains unknown. Isolated adult rat cardiac myocytes were chronically exposed to free fatty acids (FFA) or PPAR agonists. Insulin- (ISGT) and oligomycin-stimulated glucose transport (OSGT) and related cell signaling were analyzed. Exposure of cardiac myocytes to FFA reduced both ISGT and OSGT. Exposure to either PPARα or PPARδ agonists, but not to a PPARγ agonist, reduced ISGT but not OSGT and increased fatty acid oxidation (FAO). The reduction in ISGT was associated with impaired insulin signaling and, in the case of PPAR stimulation, overexpression of SOCS-3, a protein known to hinder proximal insulin signaling. In contrast, the reduction of OSGT could not be explained by a reduced activity of the cellular energy-sensing system, as assessed from the maintained phosphorylation state of AMPK. Inhibition of FAO at the level of mitochondrial acylcarnitine uptake restored OSGT but not ISGT. Seemingly paradoxically, further stimulation of FAO with PPARα or PPARδ agonists also restored OSGT but not ISGT. Together, these results suggest that inhibition of OSGT occurs downstream of energy gauging and is caused by some intermediate(s) of fatty acid oxidation, which does not appear to be acylcarnitines. The results indicate that the mechanisms underlying FFA-mediated inhibition of ISGT and OSGT differ remarkably.
    Document Type:
    Reference
    Product Catalog Number:
    07-741
    Product Catalog Name:
    Anti-AS160 (Rab-GAP) Antibody
  • Loss of Shp2-mediated mitogen-activated protein kinase signaling in Muller glial cells results in retinal degeneration. 21576358

    Extensive studies have identified many growth factors and intracellular pathways that can promote neuronal survival after retinal injury, but the intrinsic survival mechanisms in the normal retina are poorly understood. Here we report that genetic ablation of Shp2 (Ptpn11) protein phosphatase resulted in progressive apoptosis of all retinal cell types. Loss of Shp2 specifically disrupted extracellular signal-regulated kinase (ERK) signaling in Müller cells, leading to Stat3 activation in photoreceptors. However, neither inactivation of Stat3 nor stimulation of AKT signaling could ameliorate the Shp2 retinal degeneration. Instead, constitutively activated Kras signaling not only rescued the retinal cell numbers in the Shp2 mutant but also functionally improved the electroretinogram recording (ERG). These results suggest that Shp2-mediated Ras-mitogen-activated protein kinase (Ras-MAPK) signaling plays a critical role in Müller cell maturation and function, which is necessary for the survival of retinal neurons.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker