Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
The signaling mechanisms that mediate the important effects of contraction to increase glucose transport in skeletal muscle are not well understood, but are known to occur through an insulin-independent mechanism. Muscle-specific knockout of LKB1, an upstream kinase for AMPK and AMPK-related protein kinases, significantly inhibited contraction-stimulated glucose transport. This finding, in conjunction with previous studies of ablated AMPKalpha2 activity showing no effect on contraction-stimulated glucose transport, suggests that one or more AMPK-related protein kinases are important for this process. Muscle contraction increased sucrose nonfermenting AMPK-related kinase (SNARK) activity, an effect blunted in the muscle-specific LKB1 knockout mice. Expression of a mutant SNARK in mouse tibialis anterior muscle impaired contraction-stimulated, but not insulin-stimulated, glucose transport. Whole-body SNARK heterozygotic knockout mice also had impaired contraction-stimulated glucose transport in skeletal muscle, and knockdown of SNARK in C2C12 muscle cells impaired sorbitol-stimulated glucose transport. SNARK is activated by muscle contraction and is a unique mediator of contraction-stimulated glucose transport in skeletal muscle.
Sucrose-rich diets compared to starch-rich diets are known to stimulate overeating under chronic conditions. The present study in normal-weight rats established an acute "preload-to-test meal" paradigm for demonstrating sucrose-induced hyperphagia and investigating possible mechanisms that mediate this behavioral phenomenon. In this acute paradigm, the rats were first given a small (15kcal) sucrose preload (30% sucrose) for 30min compared to an equicaloric, starch preload (25% starch with 5% sucrose) and then allowed to freely consume a subsequent test meal of lab chow. The sucrose preload, when compared to a starch preload equal in energy density and palatability, consistently increased food intake in the subsequent test meal occurring between 60 and 120min after the end of the preload. Measurements of hormones, metabolites and hypothalamic peptides immediately preceding this hyperphagia revealed marked differences between the sucrose vs starch groups that could contribute to the increase in food intake. Whereas the sucrose group compared to the starch group immediately after the preload (at 10min) had elevated levels of glucose in serum and cerebrospinal fluid (CSF) along with reduced expressions of neuropeptide Y (NPY) and agouti-related protein (AgRP) in the arcuate nucleus (ARC), the subsequent effects (at 30-60min) just preceding the test meal hyperphagia were the reverse. Along with lower levels of glucose, they included markedly elevated serum and CSF levels of corticosterone and mRNA levels of NPY and AgRP in the ARC. In addition to establishing an animal model for sucrose-induced hyperphagia, these results demonstrate peripheral and central mechanisms that may mediate this behavioral phenomenon.
Recent work has shown that the LKB1 tumour suppressor protein kinase phosphorylates and activates protein kinases belonging to the AMP activated kinase (AMPK) subfamily. In this study, we identify the sucrose non-fermenting protein (SNF1)-related kinase (SNRK), a largely unstudied AMPK subfamily member, as a novel substrate for LKB1. We demonstrate that LKB1 activates SNRK by phosphorylating the T-loop residue (Thr173), and that the LKB1 regulatory subunits STRAD and MO25 are required for LKB1 to activate SNRK. We find that SNRK is not active when expressed in HeLa cells that lack expression of LKB1, and its activity is restored by expression of wild type LKB1, but not catalytically deficient LKB1. We also present evidence that two other AMPK-related kinases more distantly related to AMPK than SNRK, namely NIM1 and testis-specific serine/threonine kinase-1 (TSSK1) are not substrates for LKB1. Tissue distribution analysis indicates that SNRK protein is mainly expressed in testis, similar to TSSK isoforms, whereas NIM1 is more widely expressed. These results provide evidence that SNRK could mediate some of the physiological effects of LKB1.
Sucrose starvation of Arabidopsis (Arabidopsis thaliana) cell culture was used to identify translationally regulated genes by DNA microarray analysis. Cells were starved by subculture without sucrose, and total and polysomal RNA was extracted between 6 and 48 h. Probes were derived from both RNA populations and used to screen oligonucleotide microarrays. Out of 25,607 screened genes, 224 were found to be differentially accumulated in polysomal RNA following starvation and 21 were found to be invariant in polysomal RNA while their total RNA abundance was modified. Most of the mRNA appears to be translationally repressed (183/245 genes), which is consistent with a general decrease in metabolic activities during starvation. The parallel transcriptional analysis identifies 268 regulated genes. Comparison of transcriptional and translational gene lists highlights the importance of translational regulation (mostly repression) affecting genes involved in cell cycle and cell growth, these being overrepresented in translationally regulated genes, providing a molecular framework for the arrest of cell proliferation following starvation. Starvation-induced translational control also affects chromatin regulation genes, such as the HD1 histone deacetylase, and the level of histone H4 acetylation was found to increase during starvation. This suggests that regulation of the global nuclear transcriptional activity might be linked to cytoplasmic translational regulations.
For humans and rodents, ingesting sucrose is rewarding. This experiment tested the prediction that the neural activity produced by sapid sucrose reaches reward systems via projections from the pons through the limbic system. Gastric cannulas drained ingested fluid before absorption. For 10 days, the rats alternated an hour of this sham ingestion between sucrose and water. On the final test day, half of them sham drank water and the other half 0.6 M sucrose. Thirty minutes later, the rats were killed and their brains immunohistochemically stained for Fos. The groups consisted of controls and rats with excitotoxic lesions in the gustatory thalamus (TTA), the medial (gustatory) parabrachial nucleus (PBN), or the lateral (visceral afferent) parabrachial nucleus. In controls, compared with water, sham ingesting sucrose produced significantly more Fos-positive neurons in the nucleus of the solitary tract, PBN, TTA, and gustatory cortex (GC). In the ventral forebrain, sucrose sham licking increased Fos in the bed nucleus of the stria terminalis, central nucleus of amygdala, and the shell of nucleus accumbens. Thalamic lesions blocked the sucrose effect in GC but not in the ventral forebrain. After lateral PBN lesions, the Fos distributions produced by distilled H(2)O or sucrose intake did not differ from controls. Bilateral medial PBN damage, however, eliminated the sucrose-induced Fos increase not only in the TTA and GC but also in the ventral forebrain. Thus ventral forebrain areas associated with affective responses appear to be activated directly by PBN gustatory neurons rather than via the thalamocortical taste system.